ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum 3-SAT is QMA1-complete

169   0   0.0 ( 0 )
 نشر من قبل David Gosset
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum satisfiability is a constraint satisfaction problem that generalizes classical boolean satisfiability. In the quantum k-SAT problem, each constraint is specified by a k-local projector and is satisfied by any state in its nullspace. Bravyi showed that quantum 2-SAT can be solved efficiently on a classical computer and that quantum k-SAT with k greater than or equal to 4 is QMA1-complete. Quantum 3-SAT was known to be contained in QMA1, but its computational hardness was unknown until now. We prove that quantum 3-SAT is QMA1-hard, and therefore complete for this complexity class.



قيم البحث

اقرأ أيضاً

Finding the ground state energy of electrons subject to an external electric field is a fundamental problem in computational chemistry. We prove that this electronic-structure problem, when restricted to a fixed single-particle basis and fixed number of electrons, is QMA-complete. Schuch and Verstraete have shown hardness for the electronic-structure problem with an additional site-specific external magnetic field, but without the restriction to a fixed basis. In their reduction, a local Hamiltonian on qubits is encoded in the site-specific magnetic field. In our reduction, the local Hamiltonian is encoded in the choice of spatial orbitals used to discretize the electronic-structure Hamiltonian. As a step in their proof, Schuch and Verstraete show a reduction from the antiferromagnetic Heisenberg Hamiltonian to the Fermi-Hubbard Hamiltonian. We combine this reduction with the fact that the antiferromagnetic Heisenberg Hamiltonian is QMA-hard to observe that the Fermi-Hubbard Hamiltonian on generic graphs is QMA-hard, even when all the hopping coefficients have the same sign. We then reduce from Fermi-Hubbard by showing that an instance of Fermi-Hubbard can be closely approximated by an instance of the Electronic-Structure Hamiltonian in a fixed basis. Finally, we show that estimating the energy of the lowest-energy Slater-determinant state (i.e., the Hartree-Fock state) is NP-complete for the Electronic-Structure Hamiltonian in a fixed basis.
Rikudo is a number-placement puzzle, where the player is asked to complete a Hamiltonian path on a hexagonal grid, given some clues (numbers already placed and edges of the path). We prove that the game is complete for NP, even if the puzzle has no h ole. When all odd numbers are placed it is in P, whereas it is still NP-hard when all numbers of the form $3k+1$ are placed.
Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots & Boxes is PSPACE-complete. Dots & Boxes has been studied extensively, with for instance a chapter in Berlekamp et al. Winning Ways for Your Mathematical Plays, a w hole book on the game The Dots and Boxes Game: Sophisticated Childs Play by Berlekamp, and numerous articles in the Games of No Chance series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.
Neuromorphic computing is a non-von Neumann computing paradigm that performs computation by emulating the human brain. Neuromorphic systems are extremely energy-efficient and known to consume thousands of times less power than CPUs and GPUs. They hav e the potential to drive critical use cases such as autonomous vehicles, edge computing and internet of things in the future. For this reason, they are sought to be an indispensable part of the future computing landscape. Neuromorphic systems are mainly used for spike-based machine learning applications, although there are some non-machine learning applications in graph theory, differential equations, and spike-based simulations. These applications suggest that neuromorphic computing might be capable of general-purpose computing. However, general-purpose computability of neuromorphic computing has not been established yet. In this work, we prove that neuromorphic computing is Turing-complete and therefore capable of general-purpose computing. Specifically, we present a model of neuromorphic computing, with just two neuron parameters (threshold and leak), and two synaptic parameters (weight and delay). We devise neuromorphic circuits for computing all the {mu}-recursive functions (i.e., constant, successor and projection functions) and all the {mu}-recursive operators (i.e., composition, primitive recursion and minimization operators). Given that the {mu}-recursive functions and operators are precisely the ones that can be computed using a Turing machine, this work establishes the Turing-completeness of neuromorphic computing.
Suppose a Boolean function $f$ is symmetric under a group action $G$ acting on the $n$ bits of the input. For which $G$ does this mean $f$ does not have an exponential quantum speedup? Is there a characterization of how rich $G$ must be before the fu nction $f$ cannot have enough structure for quantum algorithms to exploit? In this work, we make several steps towards understanding the group actions $G$ which are quantum intolerant in this way. We show that sufficiently transitive group actions do not allow a quantum speedup, and that a well-shuffling property of group actions -- which happens to be preserved by several natural transformations -- implies a lack of super-polynomial speedups for functions symmetric under the group action. Our techniques are motivated by a recent paper by Chailloux (2018), which deals with the case where $G=S_n$. Our main application is for graph symmetries: we show that any Boolean function $f$ defined on the adjacency matrix of a graph (and symmetric under relabeling the vertices of the graph) has a power $6$ relationship between its randomized and quantum query complexities, even if $f$ is a partial function. In particular, this means no graph property testing problems can have super-polynomial quantum speedups, settling an open problem of Ambainis, Childs, and Liu (2011).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا