ﻻ يوجد ملخص باللغة العربية
We prove an analogue of the celebrated Hall-Higman theorem, which gives a lower bound for the degree of the minimal polynomial of any semisimple element of prime power order $p^{a}$ of a finite classical group in any nontrivial irreducible cross characteristic representation. With a few explicit exceptions, this degree is at least $p^{a-1}(p-1)$.
We prove that the closure of every Jordan class J in a semisimple simply connected complex group G at a point x with Jordan decomposition x = rv is smoothly equivalent to the union of closures of those Jordan classes in the centraliser of r that are
We introduce a notion of measure contracting actions and show that Koopman representations corresponding to ergodic measure contracting actions are irreducible. As a corollary we obtain that Koopman representations associated to canonical actions of
Let $q$ be a power of a prime $p$, let $G$ be a finite Chevalley group over $mathbb{F}_q$ and let $U$ be a Sylow $p$-subgroup of $G$; we assume that $p$ is not a very bad prime for $G$. We explain a procedure of reduction of irreducible complex chara
We calculate the Plancherel formula for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. As a consequence we obtain a concrete description of their associated reduced group $ C^* $-a
In this paper we study the Gan-Gross-Prasad problem for finite classical groups. Our results provide complete answers for unipotent representations, and we obtain the explicit branching laws for these representations. Moreover, for arbitrary represen