ﻻ يوجد ملخص باللغة العربية
We calculate the Plancherel formula for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. As a consequence we obtain a concrete description of their associated reduced group $ C^* $-algebras. The main ingredients in our proof are the Bernstein-Gelfand-Gelfand complex and the Hopf trace formula.
We show that complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups, satisfy a categorical version of the Baum-Connes conjecture with trivial coefficients. This approach, based on homologic
We provide the first formulae for the weights of all simple highest weight modules over Kac-Moody algebras. For generic highest weights, we present a formula for the weights of simple modules similar to the Weyl-Kac character formula. For the remaini
We discuss the structure of the Motzkin algebra $M_k(D)$ by introducing a sequence of idempotents and the basic construction. We show that $cup_{kgeq 1}M_k(D)$ admits a factor trace if and only if $Din {2cos(pi/n)+1|ngeq 3}cup [3,infty)$ and higher c
We stabilize the full Arthur-Selberg trace formula for the metaplectic covering of symplectic groups over a number field. This provides a decomposition of the invariant trace formula for metaplectic groups, which encodes information about the genuine
We prove an analogue of the celebrated Hall-Higman theorem, which gives a lower bound for the degree of the minimal polynomial of any semisimple element of prime power order $p^{a}$ of a finite classical group in any nontrivial irreducible cross char