ترغب بنشر مسار تعليمي؟ اضغط هنا

VERITAS Studies of the Supernova Remnants Cas A and IC 443

194   0   0.0 ( 0 )
 نشر من قبل Thomas Brian Humensky
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

VERITAS observed the supernova remnants Cassiopeia A (Cas A) and IC 443 during 2007, resulting in strong TeV detections of both sources. Cas A is a young remnant, and bright in both the radio and nonthermal X-rays, both tracers of cosmic-ray electrons. IC 443 is a middle-aged composite remnant interacting with a molecular cloud; the molecular cloud provides an enhanced density of target material for hadronic cosmic rays to produce TeV gamma rays via pion decay. The TeV morphology - point-like for Cas A and extended for IC 443 - will be discussed in the context of existing multiwavelength data on the remnants.



قيم البحث

اقرأ أيضاً

We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsa r wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.
We present near-infrared (2.5-5.0 {mu}m) spectral studies of shocked H2 gas in the two supernova remnants IC 443 and HB 21, which are well known for their interactions with nearby molecular clouds. The observations were performed with Infrared Camera (IRC) aboard the AKARI satellite. At the energy range 7000 K <= E(v,J) <= 20000 K, the shocked H2 gas in IC 443 shows an ortho-to-para ratio (OPR) of 2.4+0.3-0.2, which is significantly lower than the equilibrium value 3, suggesting the existence of non-equilibrium OPR. The shocked gas in HB 21 also indicates a potential non-equilibrium OPR in the range of 1.8-2.0. The level populations are well described by the power-law thermal admixture model with a single OPR, where the temperature integration range is 1000-4000 K. We conclude that the obtained non-equilibrium OPR probably originates from the reformed H2 gas of dissociative J-shocks, considering several factors such as the shock combination requirement, the line ratios, and the possibility that H2 gas can form on grains with a non-equilibrium OPR. We also investigate C-shocks and partially-dissociative J-shocks for the origin of the non-equilibrium OPR. However, we find that they are incompatible with the observed ionic emission lines for which dissociative J-shocks are required to explain. The difference in the collision energy of H atoms on grain surfaces would make the observed difference between the OPRs of IC 443 and HB 21, if dissociative J-shocks are responsible for the H2 emission. Our study suggests that dissociative J-shocks can make shocked H2 gas with a non-equilibrium OPR.
326 - Amanda Weinstein 2011
Supernova remnants (SNRs) are widely considered the most likely source of cosmic rays below the knee ($10^{15}$ eV). Studies of GeV and TeV gamma-ray emission in the vicinity of SNRs, in combination with multi-wavelength observations, can trace and c onstrain the nature of the charged particle population believed to be accelerated within SNR shocks. They may also speak to the diffusion and propagation of these energetic particles and to the nature of the acceleration mechanisms involved. We report here on recent observations of SNRs with VERITAS, including the discoveries of VHE gamma-ray emission from from G120.1+1.4 (Tychos SNR) and from the northwest shell of G78.2+2.1 (gamma-ray source VER J2019+407, which was discovered as a consequence of the VERITAS Cygnus region survey).
The Supernova Remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray and gamma-ray energy emissions. In this Letter we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV-3 GeV is detected across the SNR with its prominent maximum (source A) localized in the Northeastern shell with a flux F = (47 pm 10) 10^{-8} photons cm^{-2} s^{-1} above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source A is not coincident with the TeV source located 0.4 degree away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its Northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma-rays in the range 0.1-10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of co-spatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud E) provides a remarkable target for nucleonic interactions of accelerated hadrons: our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.
62 - Adam M. Ritchey 2020
We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on a comprehensive examination of high-resolution far-ultraviolet spectra ob tained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope of two stars behind IC 443. One of our targets (HD 43582) probes gas along the entire line of sight through the supernova remnant, while the other (HD 254755) samples material located ahead of the primary supernova shock front. We identify low velocity quiescent gas in both directions and find that the densities and temperatures in these components are typical of diffuse atomic and molecular clouds. Numerous high velocity components are observed in the absorption profiles of neutral and singly-ionized atomic species toward HD 43582. These components exhibit a combination of greatly enhanced thermal pressures and significantly reduced dust-grain depletions. We interpret this material as cooling gas in a recombination zone far downstream from shocks driven into neutral gas clumps. The pressures derived for a group of ionized gas components at high positive velocity toward HD 43582 are lower than those of the other shocked components, pointing to pressure inhomogeneities across the remnant. A strong very high velocity component near -620 km/s is seen in the absorption profiles of highly-ionized species toward HD 43582. The velocity of this material is consistent with the range of shock velocities implied by observations of soft thermal X-ray emission from IC 443. Moderately high-velocity gas toward HD 254755 may represent shocked material from a separate foreground supernova remnant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا