ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent Observations of Supernova Remnants with VERITAS

326   0   0.0 ( 0 )
 نشر من قبل Amanda Weinstein
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Amanda Weinstein




اسأل ChatGPT حول البحث

Supernova remnants (SNRs) are widely considered the most likely source of cosmic rays below the knee ($10^{15}$ eV). Studies of GeV and TeV gamma-ray emission in the vicinity of SNRs, in combination with multi-wavelength observations, can trace and constrain the nature of the charged particle population believed to be accelerated within SNR shocks. They may also speak to the diffusion and propagation of these energetic particles and to the nature of the acceleration mechanisms involved. We report here on recent observations of SNRs with VERITAS, including the discoveries of VHE gamma-ray emission from from G120.1+1.4 (Tychos SNR) and from the northwest shell of G78.2+2.1 (gamma-ray source VER J2019+407, which was discovered as a consequence of the VERITAS Cygnus region survey).



قيم البحث

اقرأ أيضاً

170 - E. Egron , A. Pellizzoni , S. Loru 2016
In the frame of the Astronomical Validation activities for the 64m Sardinia Radio Telescope, we performed 5-22 GHz imaging observations of the complex-morphology supernova remnants (SNRs) W44 and IC443. We adopted innovative observing and mapping tec hniques providing unprecedented accuracy for single-dish imaging of SNRs at these frequencies, revealing morphological details typically available only at lower frequencies through interferometry observations. High-frequency studies of SNRs in the radio range are useful to better characterize the spatially-resolved spectra and the physical parameters of different regions of the SNRs interacting with the ISM. Furthermore, synchrotron-emitting electrons in the high-frequency radio band are also responsible for the observed high-energy phenomenology as -e.g.- Inverse Compton and bremsstrahlung emission components observed in gamma-rays, to be disentangled from hadron emission contribution (providing constraints on the origin of cosmic rays).
We report the detection of gamma-ray emission coincident with four supernova remnants (SNRs) using data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. G349.7+0.2, CTB 37A, 3C 391 and G8.7-0.1 are supernova remnants known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in their directions. SNR shocks are expected to be sites of cosmic rays acceleration, and clouds of dense material can provide effective targets for production of gamma-rays from pion-decay. The observations reveal unresolved sources in the direction of G349.7+0.2, CTB 37A and 3C 391, and a possibly extended source coincident with G8.7-0.1, all with significance levels greater than 10 sigma.
Candidate supernova remnants G23.5+0.1 and G25.5+0.0 were observed by XMM-Newton in the course of a snap-shot survey of plerionic and composite SNRs in the Galactic plane. In the field of G23.5+0.1, we detected an extended source, ~3 in diameter, whi ch we tentatively interpret as a pulsar-wind nebula (PWN) of the middle-aged radio pulsar B1830-08. Our analysis suggests an association between PSR B1830-08 and the surrounding diffuse radio emission. If the radio emission is due to the SNR, then the pulsar must be significantly younger than its characteristic age. Alternatively, the radio emission may come from a relic PWN. In the field of G25.5+0.0, which contains the extended TeV source HESS J1837-069, we detected the recently discovered young high-energy pulsar J1838-0655 embedded in a PWN with extent of 1.3. We also detected another PWN candidate (AX J1837.3-0652) with an extent of 2 and unabsorbed luminosity L_(2-10 keV) ~ 4 x 10^33 erg/s at d=7 kpc. The third X-ray source, located within the extent of the HESS J1837-069, has a peculiar extended radio counterpart, possibly a radio galaxy with a double nucleus or a microquasar. We did not find any evidence of the SNR emission in the G25.5+0.0 field. We provide detailed multiwavelength analysis and identifications of other field sources and discuss robustness of the G25.5+0.0 and G23.5+0.1 classifications as SNRs. (abstract abridged)
121 - Peter Cogan 2008
We present the discovery of very high energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 0806+524 (z=0.138) and the intermediate-frequency-peaked BL Lac object W Comae (z=0.102) with VERITAS. VHE emission was discovered from these objects during the 2007/2008 observing campaign, with a strong outburst from W Comae detected in mid-March, lasting a few days. Quasi-simultaneous spectral energy distributions are presented, incorporating optical (AAVSO), and X-ray (Swift/RXTE) observations. We also present the energy spectrum of the distant BL Lac (z=0.182) 1ES 1218+304 which was detected by VERITAS during the 2006/2007 observing campaign. The energy spectrum is discussed in the context of different models of absorption from the diffuse extragalactic background radiation. We present multiwavelength observations of the blazar Markarian 421 (z=0.03), including a strong flare initially detected by the Whipple 10m gamma-ray telescope. Finally we present a broadband spectral energy distribution for 1ES 2344+514 (z=0.044) which is successfully fit using a one zone synchrotron self-Compton model.
We present the first public database of high-energy observations of all known Galactic supernova remnants (SNRs). In section 1 we introduce the rationale for this work motivated primarily by studying particle acceleration in SNRs, and which aims at b ridging the already existing census of Galactic SNRs (primarily made at radio wavelengths) with the ever-growing but diverse observations of these objects at high-energies (in the X-ray and gamma-ray regimes). In section 2 we show how users can browse the database using a dedicated web front-end (http://www.physics.umanitoba.ca/snr/SNRcat). In section 3 we give some basic statistics about the records we have collected so far, which provides a summary of our current view of Galactic SNRs. Finally, in section 4, we discuss some possible extensions of this work. We believe that this catalogue will be useful to both observers and theorists, and timely with the synergy in radio/high-energy SNR studies as well as the upcoming new high-energy missions. A feedback form provided on the website will allow users to provide comments or input, thus helping us keep the database up-to-date with the latest observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا