ترغب بنشر مسار تعليمي؟ اضغط هنا

Ortho-to-Para Ratio Studies of Shocked H2 Gas in the Two Supernova Remnants IC 443 and HB 21

131   0   0.0 ( 0 )
 نشر من قبل Jong-Ho Shinn
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near-infrared (2.5-5.0 {mu}m) spectral studies of shocked H2 gas in the two supernova remnants IC 443 and HB 21, which are well known for their interactions with nearby molecular clouds. The observations were performed with Infrared Camera (IRC) aboard the AKARI satellite. At the energy range 7000 K <= E(v,J) <= 20000 K, the shocked H2 gas in IC 443 shows an ortho-to-para ratio (OPR) of 2.4+0.3-0.2, which is significantly lower than the equilibrium value 3, suggesting the existence of non-equilibrium OPR. The shocked gas in HB 21 also indicates a potential non-equilibrium OPR in the range of 1.8-2.0. The level populations are well described by the power-law thermal admixture model with a single OPR, where the temperature integration range is 1000-4000 K. We conclude that the obtained non-equilibrium OPR probably originates from the reformed H2 gas of dissociative J-shocks, considering several factors such as the shock combination requirement, the line ratios, and the possibility that H2 gas can form on grains with a non-equilibrium OPR. We also investigate C-shocks and partially-dissociative J-shocks for the origin of the non-equilibrium OPR. However, we find that they are incompatible with the observed ionic emission lines for which dissociative J-shocks are required to explain. The difference in the collision energy of H atoms on grain surfaces would make the observed difference between the OPRs of IC 443 and HB 21, if dissociative J-shocks are responsible for the H2 emission. Our study suggests that dissociative J-shocks can make shocked H2 gas with a non-equilibrium OPR.



قيم البحث

اقرأ أيضاً

We present near-infrared (2.5 - 5.0 um) spectra of shocked H2 gas in the supernova remnant IC 443, obtained with the satellite AKARI. Three shocked clumps-known as B, C, and G-and one background region were observed, and only H2 emission lines were d etected. Except the clump B, the extinctioncorrected level population shows the ortho-to-para ratio of ~ 3.0. From the level population of the clumps C and G-both AKARIs only and the one extended with previous mid-infrared observations-we found that the v = 0 levels are more populated than the v > 0 levels at a fixed level energy, which cannot be reproduced by any combination of H2 gas in Local Thermodynamic Equilibrium. The populations are described by the two-density power-law thermal admixture model, revised to include the collisions with H atoms. We attributed the lower (n(H2)=10^(2.8-3.8) cm-3) and higher (n(H2)=10^(5.4-5.8) cm-3) density gases to the shocked H2 gas behind C-type and J-type shocks, respectively, based on several arguments including the obtained high H I abundance n(H I)/n(H2)=0.01. Under the hierarchical picture of molecular clouds, the C-type and J-type shocks likely propagate into clumps and clouds (interclump media), respectively. The power-law index b of 1.6 and 3.5, mainly determined by the lower density gas, is attributed to the shock-velocity diversity, which may be a natural result during shock-cloud interactions. According to our results, H2 v = 1 - 0 S(1) emission is mainly from J-shocks propagating into interclump media. The H2 emission was also detected at the background region, and this diffuse H2 emission may originate from collisional process in addition to the ultraviolet photon pumping.
VERITAS observed the supernova remnants Cassiopeia A (Cas A) and IC 443 during 2007, resulting in strong TeV detections of both sources. Cas A is a young remnant, and bright in both the radio and nonthermal X-rays, both tracers of cosmic-ray electron s. IC 443 is a middle-aged composite remnant interacting with a molecular cloud; the molecular cloud provides an enhanced density of target material for hadronic cosmic rays to produce TeV gamma rays via pion decay. The TeV morphology - point-like for Cas A and extended for IC 443 - will be discussed in the context of existing multiwavelength data on the remnants.
62 - Adam M. Ritchey 2020
We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on a comprehensive examination of high-resolution far-ultraviolet spectra ob tained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope of two stars behind IC 443. One of our targets (HD 43582) probes gas along the entire line of sight through the supernova remnant, while the other (HD 254755) samples material located ahead of the primary supernova shock front. We identify low velocity quiescent gas in both directions and find that the densities and temperatures in these components are typical of diffuse atomic and molecular clouds. Numerous high velocity components are observed in the absorption profiles of neutral and singly-ionized atomic species toward HD 43582. These components exhibit a combination of greatly enhanced thermal pressures and significantly reduced dust-grain depletions. We interpret this material as cooling gas in a recombination zone far downstream from shocks driven into neutral gas clumps. The pressures derived for a group of ionized gas components at high positive velocity toward HD 43582 are lower than those of the other shocked components, pointing to pressure inhomogeneities across the remnant. A strong very high velocity component near -620 km/s is seen in the absorption profiles of highly-ionized species toward HD 43582. The velocity of this material is consistent with the range of shock velocities implied by observations of soft thermal X-ray emission from IC 443. Moderately high-velocity gas toward HD 254755 may represent shocked material from a separate foreground supernova remnant.
The formation of stars and planetary systems is a complex phenomenon, which relies on the interplay of multiple physical processes. Nonetheless, it represents a crucial stage for our understanding of the Universe, and in particular of the conditions leading to the formation of key molecules (e.g. water) on comets and planets. {it Herschel} observations demonstrated that stars form out of gaseous filamentary structures in which the main constituent is molecular hydrogen (H$_2$). Depending on its nuclear spin H$_2$ can be found in two forms: `ortho with parallel spins and `para where the spins are anti-parallel. The relative ratio among these isomers, i.e.,the ortho-to-para ratio (OPR), plays a crucial role in a variety of processes related to the thermodynamics of star-forming gas and to the fundamental chemistry affecting the formation of water in molecular clouds and its subsequent deuteration, commonly used to determine the origin of water in Solar Systems bodies. Here, for the first time, we assess the evolution of the OPR starting from the warm neutral medium, by means of state-of-the-art three-dimensional magneto-hydrodynamic simulations of turbulent molecular clouds. Our results show that star-forming clouds exhibit a low OPR ($ll 0.1$) already at moderate densities ($sim$1000 cm$^{-3}$). We also constrain the cosmic rays ionisation rate, finding that $10^{-16},rm s^{-1}$ is the lower limit required to explain the observations of diffuse clouds. Our results represent a step forward in the understanding of the star and planet formation process providing a robust determination of the chemical initial conditions for both theoretical and observational studies.
We investigate the water deuteration ratio and ortho-to-para nuclear spin ratio of H2 (OPR(H2)) during the formation and early evolution of a molecular cloud, following the scenario that accretion flows sweep and accumulate HI gas to form molecular c louds. We follow the physical evolution of post-shock materials using a one-dimensional shock model, with post-processing gas-ice chemistry simulations. This approach allows us to study the evolution of the OPR(H2) and water deuteration ratio without an arbitrary assumption concerning the initial molecular abundances, including the initial OPR(H2). When the conversion of hydrogen into H2 is almost complete, the OPR(H2) is already much smaller than the statistical value of three due to the spin conversion in the gas phase. As the gas accumulates, the OPR(H2) decreases in a non-equilibrium manner. We find that water ice can be deuterium-poor at the end of its main formation stage in the cloud, compared to water vapor observed in the vicinity of low-mass protostars where water ice is likely sublimated. If this is the case, the enrichment of deuterium in water should mostly occur at somewhat later evolutionary stages of star formation, i.e., cold prestellar/protostellar cores. The main mechanism to suppress water ice deuteration in the cloud is the cycle of photodissociation and reformation of water ice, which efficiently removes deuterium from water ice chemistry. The removal efficiency depends on the main formation pathway of water ice. The OPR(H2) plays a minor role in water ice deuteration at the main formation stage of water ice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا