ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a new class of codes for over-loaded synchronous wireless CDMA systems which increases the number of users for a fixed number of chips without introducing any errors. In addition these codes support active user detection. We derive an upper bound on the number of users with a fixed spreading factor. Also we propose an ML decoder for a subclass of these codes that is computationally implementable. Although for our simulations we consider a scenario that is worse than what occurs in practice, simulation results indicate that this coding/decoding scheme is robust against additive noise. As an example, for 64 chips and 88 users we propose a coding/decoding scheme that can obtain an arbitrary small probability of error which is computationally feasible and can detect active users. Furthermore, we prove that for this to be possible the number of users cannot be beyond 230.
Recently, a new class of binary codes for overloaded CDMA systems are proposed that not only has the ability of errorless communication but also suitable for detecting active users. These codes are called COWDA [1]. In [1], a Maximum Likelihood (ML)
Non-orthogonal multiple-access (NOMA) is a leading technology which gain a lot of interest this past several years. It enables larger user density and therefore is suited for modern systems such as 5G and IoT. In this paper we examined different fram
Self-dual codes over $Z_2timesZ_4$ are subgroups of $Z_2^alpha timesZ_4^beta$ that are equal to their orthogonal under an inner-product that relates to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.