ﻻ يوجد ملخص باللغة العربية
Non-orthogonal multiple-access (NOMA) is a leading technology which gain a lot of interest this past several years. It enables larger user density and therefore is suited for modern systems such as 5G and IoT. In this paper we examined different frame-based codes for a partially active NOMA system. It is a more realistic setting where only part of the users, in an overly populated system, are active simultaneously. We introduce a new analysis approach were the active user ratio, a systems feature, is kept constant and different sized frames are employed. The frame types were partially derived from previous papers on the subject [1][2] and partially novel such as the LPF and the Steiner ETF. We learned the best capacity achieving frame depends on the active user ratio and three distinct ranges where defined. In addition, we introduced a measure called practical capacity which is the maximal rate achieved by simple coding scheme. ETFs always achieve the best practical capacity while LPFs and sparse frames are worse than a random one.
Distributed computation is a framework used to break down a complex computational task into smaller tasks and distributing them among computational nodes. Erasure correction codes have recently been introduced and have become a popular workaround to
Partially information coupled turbo codes (PIC-TCs) is a class of spatially coupled turbo codes that can approach the BEC capacity while keeping the encoding and decoding architectures of the underlying component codes unchanged. However, PIC-TCs hav
In this paper we introduce a new class of codes for over-loaded synchronous wireless CDMA systems which increases the number of users for a fixed number of chips without introducing any errors. In addition these codes support active user detection. W
This paper proposes a tractable solution for integrating non-orthogonal multiple access (NOMA) into massive machine-type communications (mMTC) to increase the uplink connectivity. Multiple transmit power levels are provided at the user end to enable
Recently, a new class of binary codes for overloaded CDMA systems are proposed that not only has the ability of errorless communication but also suitable for detecting active users. These codes are called COWDA [1]. In [1], a Maximum Likelihood (ML)