ﻻ يوجد ملخص باللغة العربية
Self-dual codes over $Z_2timesZ_4$ are subgroups of $Z_2^alpha timesZ_4^beta$ that are equal to their orthogonal under an inner-product that relates to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible values $alpha,beta$ such that there exist a code $Csubseteq Z_2^alpha timesZ_4^beta$ are established. Moreover, the construction of a $add$-linear code for each type and possible pair $(alpha,beta)$ is given. Finally, the standard techniques of invariant theory are applied to describe the weight enumerators for each type.
We introduce a consistent and efficient method to construct self-dual codes over $GF(q)$ with symmetric generator matrices from a self-dual code over $GF(q)$ of smaller length where $q equiv 1 pmod 4$. Using this method, we improve the best-known min
In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been
In this paper, we give conditions for the existence of Hermitian self-dual $Theta-$cyclic and $Theta-$negacyclic codes over the finite chain ring $mathbb{F}_q+umathbb{F}_q$. By defining a Gray map from $R=mathbb{F}_q+umathbb{F}_q$ to $mathbb{F}_{q}^{
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code
Construction $C^star$ was recently introduced as a generalization of the multilevel Construction C (or Forneys code-formula), such that the coded levels may be dependent. Both constructions do not produce a lattice in general, hence the central idea