ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Dual Codes over Z_2xZ_4

148   0   0.0 ( 0 )
 نشر من قبل Cristina Fern\\'andez-C\\'ordoba
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-dual codes over $Z_2timesZ_4$ are subgroups of $Z_2^alpha timesZ_4^beta$ that are equal to their orthogonal under an inner-product that relates to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible values $alpha,beta$ such that there exist a code $Csubseteq Z_2^alpha timesZ_4^beta$ are established. Moreover, the construction of a $add$-linear code for each type and possible pair $(alpha,beta)$ is given. Finally, the standard techniques of invariant theory are applied to describe the weight enumerators for each type.



قيم البحث

اقرأ أيضاً

We introduce a consistent and efficient method to construct self-dual codes over $GF(q)$ with symmetric generator matrices from a self-dual code over $GF(q)$ of smaller length where $q equiv 1 pmod 4$. Using this method, we improve the best-known min imum weights of self-dual codes, which have not significantly improved for almost two decades. We focus on a class of self-dual codes, including double circulant codes. Using our method, called a `symmetric building-up construction, we obtain many new self-dual codes over $GF(13)$ and $GF(17)$ and improve the bounds of best-known minimum weights of self-dual codes of lengths up to 40. Besides, we compute the minimum weights of quadratic residue codes that were not known before. These are: a [20,10,10] QR self-dual code over $GF(23)$, two [24,12,12] QR self-dual codes over $GF(29)$ and $GF(41)$, and a [32,12,14] QR self-dual codes over $GF(19)$. They have the highest minimum weights so far.
In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been reported. For odd prime power $q$ with $q$ square, the total number of lengths for MDS self-dual codes over $mathbb{F}_q$ presented in this paper is much more than those in all the previous results.
In this paper, we give conditions for the existence of Hermitian self-dual $Theta-$cyclic and $Theta-$negacyclic codes over the finite chain ring $mathbb{F}_q+umathbb{F}_q$. By defining a Gray map from $R=mathbb{F}_q+umathbb{F}_q$ to $mathbb{F}_{q}^{ 2}$, we prove that the Gray images of skew cyclic codes of odd length $n$ over $R$ with even characteristic are equivalent to skew quasi-twisted codes of length $2n$ over $mathbb{F}_q$ of index $2$. We also extend an algorithm of Boucher and Ulmer cite{BF3} to construct self-dual skew cyclic codes based on the least common left multiples of non-commutative polynomials over $mathbb{F}_q+umathbb{F}_q$.
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code s over. The main idea of our constructions is to choose suitable evaluation points such that the corresponding (extended) GRS codes are Euclidean self-dual (self-orthogonal). The evaluation sets are consists of two subsets which satisfy some certain conditions and the length of these codes can be expressed as a linear combination of two factors of q-1. Four families of MDS self-dual codes, two families of MDS self-orthogonal codes and two families of MDS almost self-dual codes are obtained and they have new parameters.
Construction $C^star$ was recently introduced as a generalization of the multilevel Construction C (or Forneys code-formula), such that the coded levels may be dependent. Both constructions do not produce a lattice in general, hence the central idea of this paper is to present a 3-level lattice Construction $C^star$ scheme that admits an efficient nearest-neighborhood decoding. In order to achieve this objective, we choose coupled codes for levels 1 and 3, and set the second level code C2 as an independent linear binary self-dual code, which is known to have a rich mathematical structure among families of linear codes. Our main result states a necessary and sufficient condition for this construction to generate a lattice. We then present examples of efficient lattices and also non-lattice constellations with good packing properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا