ترغب بنشر مسار تعليمي؟ اضغط هنا

On the inverse problem of calculus of variations

112   0   0.0 ( 0 )
 نشر من قبل M. C. Nucci
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that given an ordinary differential equation of order four, it may be possible to determine a Lagrangian if the third derivative is absent (or eliminated) from the equation. This represents a subcase of Felsconditions [M. E. Fels, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations, Trans. Amer. Math. Soc. 348 (1996) 5007-5029] which ensure the existence and uniqueness of the Lagrangian in the case of a fourth-order equation. The key is the Jacobi last multiplier as in the case of a second-order equation. Two equations from a Number Theory paper by Hall, one of second and one of fourth order, will be used to exemplify the method. The known link between Jacobi last multiplier and Lie symmetries is also exploited. Finally the Lagrangian of two fourth-order equations drawn from Physics are determined with the same method.



قيم البحث

اقرأ أيضاً

We discuss a method to construct hadronic scattering and decay amplitudes from Euclidean correlators, by combining the approach of a regulated inverse Laplace transform with the work of Maiani and Testa. Revisiting the original result, we observe tha t the key observation, i.e. that only threshold scattering information can be extracted at large separations, can be understood by interpreting the correlator as a spectral function, $rho(omega)$, convoluted with the Euclidean kernel, $e^{- omega t}$, which is sharply peaked at threshold. We therefore consider a modification in which a smooth step function, equal to one above a target energy, is inserted in the spectral decomposition. This can be achieved either through Backus-Gilbert-like methods or more directly using the variational approach. The result is a shifted resolution function, such that the large $t$ limit projects onto scattering or decay amplitudes above threshold. The utility of this method is highlighted through large $t$ expansions of both three- and four-point functions that include leading terms proportional to the real and imaginary parts (separately) of the target observable. This work also presents new results relevant for the un-modified correlator at threshold, including expressions for extracting the $N pi$ scattering length from four-point functions and a new strategy to organize the large $t$ expansion that exhibits better convergence than the expansion in powers of $1/t$.
167 - Yong Lin , Yunyan Yang 2021
Let $G=(V,E)$ be a locally finite graph. Firstly, using calculus of variations, including a direct method of variation and the mountain-pass theory, we get sequences of solutions to several local equations on $G$ (the Schrodinger equation, the mean f ield equation, and the Yamabe equation). Secondly, we derive uniform estimates for those local solution sequences. Finally, we obtain global solutions by extracting convergent sequence of solutions. Our method can be described as a variational method from local to global.
The calculus of variations is a field of mathematical analysis born in 1687 with Newtons problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the a ssociated Euler-Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newtons approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler-Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.
A gauge-invariant formulation of constrained variational calculus, based on the introduction of the bundle of affine scalars over the configuration manifold, is presented. In the resulting setup, the Lagrangian is replaced by a section of a suitable principal fibre bundle over the velocity space. A geometric rephrasement of Pontryagins maximum principle, showing the equivalence between a constrained variational problem in the state space and a canonically associated free one in a higher affine bundle, is proved.
125 - O. Lisovyy , J. Roussillon 2016
We study the dependence of the tau function of Painleve I equation on the generalized monodromy of the associated linear problem. In particular, we compute connection constants relating the tau function asymptotics on five canonical rays at infinity. The result is expressed in terms of dilogarithms of cluster type coordinates on the space of Stokes data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا