ﻻ يوجد ملخص باللغة العربية
We show that given an ordinary differential equation of order four, it may be possible to determine a Lagrangian if the third derivative is absent (or eliminated) from the equation. This represents a subcase of Felsconditions [M. E. Fels, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations, Trans. Amer. Math. Soc. 348 (1996) 5007-5029] which ensure the existence and uniqueness of the Lagrangian in the case of a fourth-order equation. The key is the Jacobi last multiplier as in the case of a second-order equation. Two equations from a Number Theory paper by Hall, one of second and one of fourth order, will be used to exemplify the method. The known link between Jacobi last multiplier and Lie symmetries is also exploited. Finally the Lagrangian of two fourth-order equations drawn from Physics are determined with the same method.
We discuss a method to construct hadronic scattering and decay amplitudes from Euclidean correlators, by combining the approach of a regulated inverse Laplace transform with the work of Maiani and Testa. Revisiting the original result, we observe tha
Let $G=(V,E)$ be a locally finite graph. Firstly, using calculus of variations, including a direct method of variation and the mountain-pass theory, we get sequences of solutions to several local equations on $G$ (the Schrodinger equation, the mean f
The calculus of variations is a field of mathematical analysis born in 1687 with Newtons problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the a
A gauge-invariant formulation of constrained variational calculus, based on the introduction of the bundle of affine scalars over the configuration manifold, is presented. In the resulting setup, the Lagrangian is replaced by a section of a suitable
We study the dependence of the tau function of Painleve I equation on the generalized monodromy of the associated linear problem. In particular, we compute connection constants relating the tau function asymptotics on five canonical rays at infinity.