ﻻ يوجد ملخص باللغة العربية
The calculus of variations is a field of mathematical analysis born in 1687 with Newtons problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the associated Euler-Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newtons approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler-Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.
Let $G=(V,E)$ be a locally finite graph. Firstly, using calculus of variations, including a direct method of variation and the mountain-pass theory, we get sequences of solutions to several local equations on $G$ (the Schrodinger equation, the mean f
We show that given an ordinary differential equation of order four, it may be possible to determine a Lagrangian if the third derivative is absent (or eliminated) from the equation. This represents a subcase of Felsconditions [M. E. Fels, The inverse
Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions.
Several approaches to the formulation of a fractional theory of calculus of variable order have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view
We develop the integral calculus for quasi-standard smooth functions defined on the ring of Fermat reals. The approach is by proving the existence and uniqueness of primitives. Besides the classical integral formulas, we show the flexibility of the C