ﻻ يوجد ملخص باللغة العربية
This work aims to provide a theoretical formulation of Surface Brightness Fluctuations (SBF) in the framework of probabilistic synthesis models, and to distinguish between the different distributions involved in the SBF definition. RESULTS: We propose three definitions of SBF: (i) stellar population SBF, which can be computed from synthesis models and provide an intrinsic metric of fit for stellar population studies; (ii) theoretical SBF, which include the stellar population SBF plus an additional term that takes into account the distribution of the number of stars per resolution element psi(N); theoretical SBF coincide with Tonry & Schneider (1998) definition in the very particular case that psi(N) is assumed to be a Poisson distribution. However, the Poisson contribution to theoretical SBF is around 0.1% of the contribution due to the stellar population SBF, so there is no justification to include any reference to Poisson statistics in the SBF definition; (iii) observational SBF, which are those obtained in observations that are distributed around the theoretical SBF. Finally, we show alternative ways to compute SBF and extend the application of stellar population SBF to defining a metric of fitting for standard stellar population studies. CONCLUSIONS: We demostrate that SBF are observational evidence of a probabilistic paradigm in population synthesis, where integrated luminosities have an intrinsic distributed nature, and they rule out the commonly assumed deterministic paradigm of stellar population modeling.
We derive Surface Brightness Fluctuations (SBF) and integrated magnitudes in the V- and I-bands using Advanced Camera for Surveys (ACS) archival data. The sample includes 14 galaxies covering a wide range of physical properties: morphology, total abs
We examine the use of surface brightness fluctuations (SBF) for both stellar population and distance studies. New V-band SBF data are reported for five Fornax cluster galaxies and combined with literature data to define a new V-band SBF distance indi
We present optical and IR integrated colours and SBF magnitudes, computed from stellar population synthesis models that include emission from the dusty envelopes surrounding TP-AGB stars undergoing mass-loss. We explore the effects of varying the mas
We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stel
We present a new spectroscopic technique based in part on targeting the upward fluctuations of the surface brightness for studying the internal stellar kinematics and metallicities of low surface brightness galaxies and streams beyond the Local Group