ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracers of stellar mass-loss. I. Optical and near-IR colours and surface brightness fluctuations

115   0   0.0 ( 0 )
 نشر من قبل Rosa Amelia Gonzalez-Lopez Lira
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical and IR integrated colours and SBF magnitudes, computed from stellar population synthesis models that include emission from the dusty envelopes surrounding TP-AGB stars undergoing mass-loss. We explore the effects of varying the mass-loss rate by one order of magnitude around the fiducial value, modifying accordingly both the stellar parameters and the output spectra of the TP-AGB stars plus their dusty envelopes. The models are single burst, and range in age from a few Myr to 14 Gyr, and in metallicity between $Z$ = 0.0001 and $Z$ = 0.07; they combine new calculations for the evolution of stars in the TP-AGB phase, with star plus envelope SEDs produced with the radiative transfer code DUSTY. We compare these models to optical and near-IR data of single AGB stars and Magellanic star clusters. This comparison validates the current understanding of the role of mass-loss in determining stellar parameters and spectra in the TP-AGB. However, neither broad-band colours nor SBF measurements in the optical or the near-IR can discern global changes in the mass-loss rate of a stellar population. We predict that mid-IR SBF measurements can pick out such changes, and actually resolve whether a relation between metallicity and mass-loss exists.



قيم البحث

اقرأ أيضاً

I present integrated colors and surface brightness fluctuation magnitudes in the mid-IR, derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between $Z$= 0.0001 and $Z$ = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of extreme single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 um and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2-3 Gyr.
This work continues our efforts to calibrate model surface brightness luminosities for the study of unresolved stellar populations, through the comparison with data of Magellanic Cloud star clusters. We present here the relation between absolute K_s- band fluctuation magnitude and (V - I) integrated colour, using data from the 2MASS and DENIS surveys, and from the literature. We compare the star cluster sample with the sample of early-type galaxies and spiral bulges studied by Liu et al. (2002). We find that intermediate-age to old clusters lie along a linear correlation with the same slope, within the errors, of that defined by the galaxies in the barM_{K_s} vs. (V - I) diagram. While the calibration by Liu et al. was determined in the colour range 1.05 < (V - I_c)_0 < 1.25, ours holds in the interval -5 >= barM_{K_s} >= -9, 0.3 <= (V - I) <= 1.25. This implies, according to Bruzual & Charlot (2003) and Mouhcine & Lancon (2003) models, that the star clusters and the latest star formation bursts in the galaxies and bulges constitute an age sequence. At the same time, there is a slight offset between the galaxies and the star clusters [the latter are ~ 0.7 mag fainter than the former at a given value of (V - I)], caused by the difference in metallicity of roughly a factor of two. The confrontation between models and galaxy data also suggests that galaxies with K_s fluctuation magnitudes that are brighter than predicted, given their (V - I) colour, might be explained in part by longer lifetimes of TP-AGB stars. (Abridged version.)
99 - M. Cervino 2008
This work aims to provide a theoretical formulation of Surface Brightness Fluctuations (SBF) in the framework of probabilistic synthesis models, and to distinguish between the different distributions involved in the SBF definition. RESULTS: We propos e three definitions of SBF: (i) stellar population SBF, which can be computed from synthesis models and provide an intrinsic metric of fit for stellar population studies; (ii) theoretical SBF, which include the stellar population SBF plus an additional term that takes into account the distribution of the number of stars per resolution element psi(N); theoretical SBF coincide with Tonry & Schneider (1998) definition in the very particular case that psi(N) is assumed to be a Poisson distribution. However, the Poisson contribution to theoretical SBF is around 0.1% of the contribution due to the stellar population SBF, so there is no justification to include any reference to Poisson statistics in the SBF definition; (iii) observational SBF, which are those obtained in observations that are distributed around the theoretical SBF. Finally, we show alternative ways to compute SBF and extend the application of stellar population SBF to defining a metric of fitting for standard stellar population studies. CONCLUSIONS: We demostrate that SBF are observational evidence of a probabilistic paradigm in population synthesis, where integrated luminosities have an intrinsic distributed nature, and they rule out the commonly assumed deterministic paradigm of stellar population modeling.
We present a comprehensive analysis of the ability of current stellar population models to reproduce the optical (ugriz) and near infra-red (JHK) colours of a small sample of well-studied nearby elliptical and S0 galaxies. We find broad agreement bet ween the ages and metallicities derived using different population models, although different models show different systematic deviations from the measured broad-band fluxes. Although it is possible to constrain Simple Stellar Population models to a well defined area in age-metallicity space, there is a clear degeneracy between these parameters even with such a full range of precise colours. The precision to which age and metallicity can be determined independently, using only broad band photometry with realistic errors, is Delta{[Fe/H]} ~ 0.18 and Delta{log(Age)} ~ 0.25. To constrain the populations and therefore the star formation history further it will be necessary to combine broad-band optical-IR photometry with either spectral line indices, or else photometry at wavelengths outside of this range.
We examine the use of surface brightness fluctuations (SBF) for both stellar population and distance studies. New V-band SBF data are reported for five Fornax cluster galaxies and combined with literature data to define a new V-band SBF distance indi cator. We use new stellar population models, based on the latest Padua isochrones transformed empirically to the observational plane, to predict SBF magnitudes and integrated colours for a wide range of population ages and metallicities. We examine the sensitivity of the predictions to changes in the isochrones, transformations, and IMF. The new models reproduce the SBF data for globular clusters fairly well, especially if higher metallicity globulars are younger. The models also give a good match to the fluctuation colors of elliptical galaxies. In order to obtain theoretical calibrations of the SBF distance indicators, we combine our single-burst models into composite population models. These models reproduce the observed behavior of the SBF magnitudes as a function of stellar population parameters, including the steep colour dependence found for HST/WFPC2 F814W SBF data. Because the theoretical SBF calibrations are fairly sensitive to uncertain details of stellar evolution, the empirical calibrations are more secure. However, the sensitivity of SBF to these finer details potentially makes it a powerful constraint for stellar evolution and population synthesis. [abbridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا