ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Populations of Elliptical Galaxies from Surface Brightness Fluctuations

275   0   0.0 ( 0 )
 نشر من قبل Michael C. Liu
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stellar luminosity function (Sigma n_i * L_i). Since SBFs also depend on the second moment (Sigma n_i * L_i^2), they provide novel information, in particular about the reddest, most luminous RGB and AGB stars, which are the most difficult stars to model. SBFs can also provide useful new constraints on the age/metallicity of unresolved stellar populations in ellipticals. Finally, developing accurate stellar population models benefits several aspects of SBF distance measurements to galaxies.



قيم البحث

اقرأ أيضاً

Near-infrared (NIR) K images of a sample of five low surface brightness disc galaxies (LSBGs) were combined with optical data, with the aim of constraining their star formation histories. Both red and blue LSBGs were imaged to enable comparison of th eir stellar populations. For both types of galaxy strong colour gradients were found, consistent with mean stellar age gradients. Very low stellar metallicities were ruled out on the basis of metallicity-sensitive optical-NIR colours. These five galaxies suggest that red and blue LSBGs have very different star formation histories and represent two independent routes to low B band surface brightness. Blue LSBGs are well described by models with low, roughly constant star formation rates, whereas red LSBGs are better described by a `faded disc scenario.
We examine the use of surface brightness fluctuations (SBF) for both stellar population and distance studies. New V-band SBF data are reported for five Fornax cluster galaxies and combined with literature data to define a new V-band SBF distance indi cator. We use new stellar population models, based on the latest Padua isochrones transformed empirically to the observational plane, to predict SBF magnitudes and integrated colours for a wide range of population ages and metallicities. We examine the sensitivity of the predictions to changes in the isochrones, transformations, and IMF. The new models reproduce the SBF data for globular clusters fairly well, especially if higher metallicity globulars are younger. The models also give a good match to the fluctuation colors of elliptical galaxies. In order to obtain theoretical calibrations of the SBF distance indicators, we combine our single-burst models into composite population models. These models reproduce the observed behavior of the SBF magnitudes as a function of stellar population parameters, including the steep colour dependence found for HST/WFPC2 F814W SBF data. Because the theoretical SBF calibrations are fairly sensitive to uncertain details of stellar evolution, the empirical calibrations are more secure. However, the sensitivity of SBF to these finer details potentially makes it a powerful constraint for stellar evolution and population synthesis. [abbridged]
To empirically calibrate the IR surface brightness fluctuation (SBF) distance scale and probe the properties of unresolved stellar populations, we measured fluctuations in 65 galaxies using NICMOS on the Hubble Space Telescope. The early-type galaxie s in this sample include elliptical and S0 galaxies and spiral bulges in a variety of environments. Absolute fluctuation magnitudes in the F160W (1.6 micron) filter were derived for each galaxy using previously-measured I-band SBF and Cepheid variable star distances. F160W SBFs can be used to measure distances to early-type galaxies with a relative accuracy of ~10% provided that the galaxy color is known to ~0.035 mag or better. Near-IR fluctuations can also reveal the properties of the most luminous stellar populations in galaxies. Comparison of F160W fluctuation magnitudes and optical colors to stellar population model predictions suggests that bluer elliptical and S0 galaxies have significantly younger populations than redder ones, and may also be more metal-rich. There are no galaxies in this sample with fluctuation magnitudes consistent with old, metal-poor (t>5 Gyr, [Fe/H]<-0.7) stellar population models. Composite stellar population models imply that bright fluctuations in the bluer galaxies may be the result of an episode of recent star formation in a fraction of the total mass of a galaxy. Age estimates from the F160W fluctuation magnitudes are consistent with those measured using the H-beta Balmer line index. The two types of measurements make use of completely different techniques and are sensitive to stars in different evolutionary phases. Both techniques reveal the presence of intermediate-age stars in the early-type galaxies of this sample.
Using optical/near-IR broadband photometry together with Halpha emission line data, we attempt to constrain the star formation histories, ages, total stellar masses and stellar mass-to-light ratios for a sample of extremely blue low surface brightnes s galaxies. We find that, under standard assumptions about the stellar initial mass function, the Halpha equivalent widths of these objects appear inconsistent with recently suggested scenarios including constant or increasing star formation rates over cosmological time scales. In a critical assessment of the prospects of obtaining ages from integrated broadband photometry, we conclude that even with near-IR data, the ages are poorly constrained and that current observations cannot rule out the possibility that these objects formed as recently as 1-2 Gyr ago. Methods which could potentially improve the age estimates are discussed. The stellar masses of these galaxies are inferred to lie below 10^10 solar masses. This, in combination with low ages, could constitute a problem for current hierarchical models of galaxy formation, which predict objects of this mass to form predominantly early in the history of the universe. The possibility to use the ages of the bluest low surface brightness galaxies as a test of such models is demonstrated.
125 - X. Shao , K. Disseau , Y. B. Yang 2015
Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology and stellar population of bulgeless low surface brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and $M_r$ $leq$ $-18. 8$. The local density parameter $Sigma_5$ is used to trace their environments. We find that, for bulgeless galaxies, the surface brightness does not depend on the environment. The stellar populations are compared for bulgeless LSB galaxies in different environments and for bulgeless LSB galaxies with different morphologies. The stellar populations of LSB galaxies in low density regions are similar to those of LSB galaxies in high density regions. Irregular LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics including mergers rather than by their large scale environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا