ترغب بنشر مسار تعليمي؟ اضغط هنا

Sharp quantitative isoperimetric inequalities in the $L^1$ Minkowski plane

143   0   0.0 ( 0 )
 نشر من قبل Benoit Kloeckner
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Benoit Kloeckner




اسأل ChatGPT حول البحث

We prove that a plane domain which is almost isoperimetric (with respect to the $L^1$ metric) is close to a square whose sides are parallel to the coordinates axis. Closeness is measured either by $L^infty$ Haussdorf distance or Fraenkel asymmetry. In the first case, we determine the extremal domains.



قيم البحث

اقرأ أيضاً

We prove the sharp quantitative stability for a wide class of weighted isoperimetric inequalities. More precisely, we consider isoperimetric inequalities in convex cones with homogeneous weights. Inspired by the proof of such isoperimetric inequali ties through the ABP method, we construct a new convex coupling (i.e., a map that is the gradient of a convex function) between a generic set $E$ and the minimizer of the inequality (as in Gromovs proof of the isoperimetric inequality). Even if this map does not come from optimal transport, and even if there is a weight in the inequality, we adapt the methods of Figalli-Maggi-Pratelli and prove that if $E$ is almost optimal for the inequality then it is quantitatively close to a minimizer up to translations. Then, a delicate analysis is necessary to rule out the possibility of translations. As a step of our proof, we establish a sharp regularity result for restricted convex envelopes of a function that might be of independent interest.
In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set $Omega$, different from a ball, which minimizes the ratio $delta(Omega)/lambda^2(Omega)$, where $delta$ is the isoperimetric deficit and $l ambda$ the Fraenkel asymmetry, giving a new proof ofthe quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.
We formulate an isoperimetric deformation of curves on the Minkowski plane, which is governed by the defocusing mKdV equation. Two classes of exact solutions to the defocusing mKdV equation are also presented in terms of the $tau$ functions. By using one of these classes, we construct an explicit formula for the corresponding motion of curves on the Minkowski plane even though those solutions have singular points. Another class give regular solutions to the defocusing mKdV equation. Some pictures illustrating typical dynamics of the curves are presented.
118 - Piotr Nowak 2010
We study a coarse homology theory with prescribed growth conditions. For a finitely generated group G with the word length metric this homology theory turns out to be related to amenability of G. We characterize vanishing of a certain fundamental cla ss in our homology in terms of an isoperimetric inequality on G and show that on any group at most linear control is needed for this class to vanish. The latter is a homological version of the classical Burnside problem for infinite groups, with a positive solution. As applications we characterize existence of primitives of the volume form with prescribed growth and show that coarse homology classes obstruct weighted Poincare inequalities.
234 - I McGillivray 2021
We consider the punctured plane with volume density $|x|^alpha$ and perimeter density $|x|^beta$. We show that centred balls are uniquely isoperimetric for indices $(alpha,beta)$ which satisfy the conditions $alpha-beta+1>0$, $alphaleq 2beta$ and $al pha(beta+1)leqbeta^2$ except in the case $alpha=beta=0$ which corresponds to the classical isoperimetric inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا