ﻻ يوجد ملخص باللغة العربية
To calculate the baryon asymmetry in the baryogenesis via leptogenesis scenario one usually uses Boltzmann equations with transition amplitudes computed in vacuum. However, the hot and dense medium and, potentially, the expansion of the universe can affect the collision terms and hence the generated asymmetry. In this paper we derive the Boltzmann equation in the curved space-time from (first-principle) Kadanoff-Baym equations. As one expects from general considerations, the derived equations are covariant generalizations of the corresponding equations in Minkowski space-time. We find that, after the necessary approximations have been performed, only the left-hand side of the Boltzmann equation depends on the space-time metric. The amplitudes in the collision term on the right--hand side are independent of the metric, which justifies earlier calculations where this has been assumed implicitly. At tree level, the matrix elements coincide with those computed in vacuum. However, the loop contributions involve additional integrals over the the distribution function.
We derive Boltzmann equations for massive spin-1/2 fermions with local and nonlocal collision terms from the Kadanoff--Baym equation in the Schwinger--Keldysh formalism, properly accounting for the spin degrees of freedom. The Boltzmann equations are
A recently developed method for incorporating initial binary correlations into the Kadanoff-Baym equations (KBE) is used to derive a generalized T-matrix approximation for the self-energies. It is shown that the T-matrix obtains additional contributi
Linear response functions are calculated for symmetric nuclear matter of normal density by time-evolving two-time Greens functions with conserving self-energy insertions, thereby satisfying the energy-sum rule. Nucleons are regarded as moving in a me
Linear density response functions are calculated for symmetric nuclear matter of normal density by time-evolving two-time Greens functions in real time. Of particular interest is the effect of correlations. The system is therefore initially time-evol
This review provides a written version of the lectures presented at the Schladming Winter School 2008, Austria, on Nonequilibrium Aspects of Quantum Field Theory. In particular, it shows the way from quantum-field theory - in two-particle irreducible