ﻻ يوجد ملخص باللغة العربية
Linear response functions are calculated for symmetric nuclear matter of normal density by time-evolving two-time Greens functions with conserving self-energy insertions, thereby satisfying the energy-sum rule. Nucleons are regarded as moving in a mean field defined by an effective mass. A two-body effective (or residual) interaction, represented by a gaussian local interaction, is used to find the effect of correlations in a second order as well as a ring approximation. The response function S(e,q) is calculated for 0.2<q<1.2 fm^{-1}. Comparison is made with the nucleons being un-correlated, RPA+HF only.
Linear density response functions are calculated for symmetric nuclear matter of normal density by time-evolving two-time Greens functions in real time. Of particular interest is the effect of correlations. The system is therefore initially time-evol
This review provides a written version of the lectures presented at the Schladming Winter School 2008, Austria, on Nonequilibrium Aspects of Quantum Field Theory. In particular, it shows the way from quantum-field theory - in two-particle irreducible
Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nu
We derive Boltzmann equations for massive spin-1/2 fermions with local and nonlocal collision terms from the Kadanoff--Baym equation in the Schwinger--Keldysh formalism, properly accounting for the spin degrees of freedom. The Boltzmann equations are
Basic issues of the time-dependent density-functional theory are discussed, especially on the real-time calculation of the linear response functions. Some remarks on the derivation of the time-dependent Kohn-Sham equations and on the numerical methods are given.