ﻻ يوجد ملخص باللغة العربية
We are interested in the modeling of wave propagation in poroelastic media. We consider the biphasic Biots model in an infinite bilayered medium, with a plane interface. We adopt the Cagniard-De Hoops technique. This report is devoted to the calculation of analytical solutions in two dimensions. The solutions we present here have been used to validate numerical codes.
We are interested in the modeling of wave propagation in poroelastic media. We consider the biphasic Biots model in an infinite bilayered medium with a plane interface. We adopt the Cagniard-De Hoops technique. This report is devoted to the calculation of analytical solution in three dimension.
We are interested in the modeling of wave propagation in an infinite bilayered acoustic/poroelastic media. We consider the biphasic Biots model in the poroelastic layer. The first part is devoted to the calculation of analytical solution in two dimen
In this note we develop tools and techniques for the treatment of anisotropic thermo-elasticity in two space dimensions. We use a diagonalisation technique to obtain properties of the characteristic roots of the full symbol of the system in order to prove $L^p$--$L^q$ decay rates for its solutions.
Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such
We investigate the singularities of the trace of the half-wave group, $mathrm{Tr} , e^{-itsqrtDelta}$, on Euclidean surfaces with conical singularities $(X,g)$. We compute the leading-order singularity associated to periodic orbits with successive de