ترغب بنشر مسار تعليمي؟ اضغط هنا

The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

338   0   0.0 ( 0 )
 نشر من قبل John Wisniewski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first multi-color view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (ACS). Radial profile fits of the surface brightness along the disks semi-major axis indicates that the disk is not continuously flared, and extends to 540 AU. The disks color (V-I)=1.1 at a radial distance of 3.5 arcseconds is redder than the observed stellar color (V-I)=0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition, both of which would be consistent with the observed non-flared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansa observed in archival HST STIS coronagraphic data. Following transformation to similar band-passes, we find that the scattered light disk of HD 163296 is 1 mag arcsec$^{-2}$ fainter at 3.5 arcseconds in the STIS data than in the ACS data. Moreover, variations are seen in (i) the visibility of the ansa(e) structures, in (ii) the relative surface brightness of the ansa(e) structures, and in (iii) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric.



قيم البحث

اقرأ أيضاً

We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the HiCIAO and SCExAO/CHARIS instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0.65 (66 AU) and extends out to 0.98 (100 AU) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW- and SE- side of the disk exhibiting similar intensities. Our data are clearly different than 2016 epoch H-band observations from VLT/SPHERE that found a strong 2.7x asymmetry between the NW- and SE-side of the disk. Collectively, these results indicate the presence of time variable, non-azimuthally symmetric illumination of the outer disk. Based on our 3D-MCRT modeling of contemporaneous IR spectroscopic and H-band polarized intensity imagery of the system, we suggest that while the system could plausibly host an inclined inner disk component, such a component is unlikely to be responsible for producing the observed time-dependent azimuthal variations in the outer scattered light disk of the system. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal IR, we fail to detect an object with a corresponding JHK brightness estimated from the atmospheric models of Baraffe et al. 2003. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the dataset/data processing. Our SCExAO/CHARIS data lower the IR mass limits for planets inferred at larger stellocentric separations; however, these ALMA-predicted protoplanet candidates are currently still consistent with direct imaging constraints.
High resolution ALMA observations revealed a variety of rich substructures in numerous protoplanetary disks. These structures consist of rings, gaps and asymmetric features. It is debated whether planets can be accounted for these substructures in th e dust continuum. Characterizing the origin of asymmetries as seen in HD 163296 might lead to a better understanding of planet formation and the underlying physical parameters of the system. We test the possibility of the formation of the crescent-shaped asymmetry in the HD 163296 disk through planet-disk interaction. The goal is to obtain constraints on planet masses and eccentricities and disk viscosities. Two dimensional, multi-fluid, hydrodynamical simulations are performed with the FARGO3D code including three embedded planets. Dust is described with the pressureless fluid approach and is distributed over eight size bins. Resulting grids are post-processed with the radiative transfer code RADMC-3D and the CASA software to model synthetic observations. We find that the crescent-shaped asymmetry can be qualitatively modeled with a Jupiter mass planet at a radial distance of 48 au. Dust is trapped preferably in the trailing Lagrange point L5 with a mass of 10 to 15 earth masses. Increased values of eccentricity of the innermost Jupiter mass planet damages the stability of the crescent-shaped feature and does not reproduce the observed radial proximity to the first prominent ring in the system. Generally, a low level of viscosity ($alpha leq 2cdot10^{-3}$) is necessary to allow the existence of such a feature. Including dust feedback the leading point L4 can dominantly capture dust for dust grains with an initial Stokes number $leq 3.6cdot 10^{-2}$. The observational results suggest a negligible effect of dust feedback since only one such feature has been detected so far.
Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly due to an inclined (sub-)stellar companion embedded in the disk. We study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. We obtained J- and H-band observations in polarized scattered light with VLT/SPHERE that show strong azimuthal asymmetries. In the outer disk, beyond ~30 au, a broad shadow spans a range of ~240{deg} in position angle, in the East. A bright ring at ~16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at ~34 au and ~50 au. We created a simple 4-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. We find that the shadow on the outer disk covers a range of position angle too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones -- or a continuously warped region -- to cast this broad shadow on the outer disk. A small misalignment of ~4{deg} between adjacent components can reproduce most of the observed shadow features. Multiple misaligned disk zones, potentially mimicing a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust depleted gap responsible for a dip in the SED.
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the framework of a model that constrains the radial and vertical location of the line emission regions. First, we develop a physically self-consistent accretion disk model with an exponentially tapered edge that matches the spectral energy distribution and spatially resolved millimeter dust continuum emission. Then, we refine the vertical structure of the model using wide range of excitation conditions sampled by the CO lines, in particular the rarely observed J=6--5 transition. By fitting 13CO data in this structure, we further constrain the vertical distribution of CO to lie between a lower boundary below which CO freezes out onto dust grains (T ~ 19 K) and an upper boundary above which CO can be photodissociated (the hydrogen column density from the disk surface is ~ 10^{21} cm-2). The freeze-out at 19 K leads to a significant drop in the gas-phase CO column density beyond a radius of ~155 AU, a CO snow line that we directly resolve. By fitting the abundances of all CO isotopologues, we derive isotopic ratios of 12C/13C, 16O/18O and 18O/17O that are consistent with quiescent interstellar gas-phase values. This detailed model of the HD 163296 disk demonstrates the potential of a staged, parametric technique for constructing unified gas and dust structure models and constraining the distribution of molecular abundances using resolved multi-transition, multi-isotope observations.
The condensation fronts (snow lines) of H2O, CO and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substanti ally, based solely on CO emission profiles is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J=3-2 and DCO+ J=4-3 emission lines toward the disk around the Herbig Ae star HD~163296 at ~0.5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincides with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 vs. 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا