ﻻ يوجد ملخص باللغة العربية
High resolution ALMA observations revealed a variety of rich substructures in numerous protoplanetary disks. These structures consist of rings, gaps and asymmetric features. It is debated whether planets can be accounted for these substructures in the dust continuum. Characterizing the origin of asymmetries as seen in HD 163296 might lead to a better understanding of planet formation and the underlying physical parameters of the system. We test the possibility of the formation of the crescent-shaped asymmetry in the HD 163296 disk through planet-disk interaction. The goal is to obtain constraints on planet masses and eccentricities and disk viscosities. Two dimensional, multi-fluid, hydrodynamical simulations are performed with the FARGO3D code including three embedded planets. Dust is described with the pressureless fluid approach and is distributed over eight size bins. Resulting grids are post-processed with the radiative transfer code RADMC-3D and the CASA software to model synthetic observations. We find that the crescent-shaped asymmetry can be qualitatively modeled with a Jupiter mass planet at a radial distance of 48 au. Dust is trapped preferably in the trailing Lagrange point L5 with a mass of 10 to 15 earth masses. Increased values of eccentricity of the innermost Jupiter mass planet damages the stability of the crescent-shaped feature and does not reproduce the observed radial proximity to the first prominent ring in the system. Generally, a low level of viscosity ($alpha leq 2cdot10^{-3}$) is necessary to allow the existence of such a feature. Including dust feedback the leading point L4 can dominantly capture dust for dust grains with an initial Stokes number $leq 3.6cdot 10^{-2}$. The observational results suggest a negligible effect of dust feedback since only one such feature has been detected so far.
Understanding the temperature structure of protoplanetary disks is key to interpreting observations, predicting the physical and chemical evolution of the disk, and modeling planet formation processes. In this study, we constrain the two-dimensional
Knowledge of the midplane temperature of protoplanetary disks is one of the key ingredients in theories of dust growth and planet formation. However, direct measurement of this quantity is complicated, and often depends on the fitting of complex mode
In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H ba
We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the