ترغب بنشر مسار تعليمي؟ اضغط هنا

Shadowing and multiple rings in the protoplanetary disk of HD 139614

87   0   0.0 ( 0 )
 نشر من قبل Gabriela Muro-Arena
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly due to an inclined (sub-)stellar companion embedded in the disk. We study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. We obtained J- and H-band observations in polarized scattered light with VLT/SPHERE that show strong azimuthal asymmetries. In the outer disk, beyond ~30 au, a broad shadow spans a range of ~240{deg} in position angle, in the East. A bright ring at ~16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at ~34 au and ~50 au. We created a simple 4-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. We find that the shadow on the outer disk covers a range of position angle too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones -- or a continuously warped region -- to cast this broad shadow on the outer disk. A small misalignment of ~4{deg} between adjacent components can reproduce most of the observed shadow features. Multiple misaligned disk zones, potentially mimicing a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust depleted gap responsible for a dip in the SED.



قيم البحث

اقرأ أيضاً

We present observations of the HD 15115 debris disk from ALMA at 1.3 mm that capture this intriguing system with the highest resolution ($0.!!^{primeprime}6$ or $29$ AU) at millimeter wavelengths to date. This new ALMA image shows evidence for two ri ngs in the disk separated by a cleared gap. By fitting models directly to the observed visibilities within a MCMC framework, we are able to characterize the millimeter continuum emission and place robust constraints on the disk structure and geometry. In the best-fit model of a power law disk with a Gaussian gap, the disk inner and outer edges are at $43.9pm5.8$ AU ($0.!!^{primeprime}89pm0.!!^{primeprime}12$) and $92.2pm2.4$ AU ($1.!!^{primeprime}88pm0.!!^{primeprime}49$), respectively, with a gap located at $58.9pm4.5$~AU ($1.!!^{primeprime}2pm0.!!^{primeprime}10$) with a fractional depth of $0.88pm0.10$ and a width of $13.8pm5.6$ AU ($0.!!^{primeprime}28pm0.!!^{primeprime}11$). Since we do not see any evidence at millimeter wavelengths for the dramatic east-west asymmetry seen in scattered light, we conclude that this feature most likely results from a mechanism that only affects small grains. Using dynamical modeling and our constraints on the gap properties, we are able to estimate a mass for the possible planet sculpting the gap to be $0.16pm0.06$ $M_text{Jup}$.
Protoplanetary disks around young stars harbor many structures related to planetary formation. Of particular interest, spiral patterns were discovered among several of these disks and are expected to be the sign of gravitational instabilities leading to giant planets formation or gravitational perturbations caused by already existing planets. In this context, the star HD100546 presents some specific characteristics with a complex gas and dusty disk including spirals as well as a possible planet in formation. The objective of this study is to analyze high contrast and high angular resolution images of this emblematic system to shed light on critical steps of the planet formation. We retrieved archival images obtained at Gemini in the near IR (Ks band) with the instrument NICI and processed the data using advanced high contrast imaging technique taking advantage of the angular differential imaging. These new images reveal the spiral pattern previously identified with HST with an unprecedented resolution, while the large-scale structure of the disk is mostly erased by the data processing. The single pattern at the southeast in HST images is now resolved into a multi-armed spiral pattern. Using two models of a gravitational perturber orbiting in a gaseous disk we attempted to bring constraints on the characteristics of this perturber assuming each spiral being independent and we derived qualitative conclusions. The non-detection of the northeast spiral pattern observed in HST allows to put a lower limit on the intensity ratio between the two sides of the disk, which if interpreted as forward scattering yields a larger anisotropic scattering than derived in the visible. Also, we found that the spirals are likely spatially resolved with a thickness of about 5-10AU. Finally, we did not detect the candidate forming planet recently discovered in the Lp band, with a mass upper limit of 16-18 MJ.
We present ALMA observations of the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{^{13}CO}~J = 1 - 0$ and $mathrm{C^{18}O}~J = 1 - 0$ line emissions of the protoplanetary disk associated with HD~142527. The $98.5~mathrm{GHz}$ continuum shows a st rong azimuthal-asymmetric distribution similar to that of the previously reported $336~mathrm{GHz}$ continuum, with a peak emission in dust concentrated region in the north. The disk is optically thin in both the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{C^{18}O}~J = 1 - 0$ emissions. We derive the distributions of gas and dust surface densities, $Sigma_mathrm{g}$ and $Sigma_mathrm{d}$, and the dust spectral opacity index, $beta$, in the disk from ALMA Band 3 and Band 7 data. In the analyses, we assume the local thermodynamic equilibrium and the disk temperature to be equal to the peak brightness temperature of $mathrm{^{13}CO}~J = 3 - 2$ with a continuum emission. The gas-to-dust ratio, $mathrm{G/D}$, varies azimuthally with a relation $mathrm{G/D} propto Sigma_mathrm{d}^{-0.53}$, and $beta$ is derived to be $approx 1$ and $approx 1.7$ in the northern and southern regions of the disk, respectively. These results are consistent with the accumulation of larger dust grains in a higher pressure region. In addition, our results show that the peak $Sigma_mathrm{d}$ is located ahead of the peak $Sigma_mathrm{g}$. If the latter corresponds to a vortex of high gas pressure, the results indicate that the dust is trapped ahead of the vortex, as predicted by some theoretical studies.
We present Subaru/SCExAO+CHARIS broadband ($JHK$-band) integral field spectroscopy of HD 34700 A. CHARIS data recover HD 34700 As disk ring and confirm multiple spirals discovered in Monnier et al. (2019). We set limits on substellar companions of $s im12 M_{rm Jup}$ at $0farcs3$ (in the ring gap) and $sim5 M_{rm Jup}$ at $0farcs75$ (outside the ring). The data reveal darkening effects on the ring and spiral, although we do not identify the origin of each feature such as shadows or physical features related to the outer spirals. Geometric albedoes converted from the surface brightness suggests a higher scale height and/or prominently abundant sub-micron dust at position angle between $sim45^circ$ and $90^circ$. Spiral fitting resulted in very large pitch angles ($sim30-50^circ$) and a stellar flyby of HD 34700 B or infall from a possible envelope is perhaps a reasonable scenario to explain the large pitch angles.
82 - M. Benisty , T. Stolker , A. Pohl 2016
Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in po larized scattered light with SPHERE/VLT at optical and near-infrared wavelengths, reaching an angular resolution of ~0.02, and an inner working angle of ~0.09. We detect polarized scattered light up to ~0.42 (~48 au) and detect a cavity, a rim with azimuthal brightness variations at an inclination of 38 degrees, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint spiral-like feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of ~119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by ~72 degrees. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim, induces an azimuthal variation of the scale height that can contribute to the brightness variations. Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. The origin of such a misalignment in HD 100453, and of the spirals, is unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا