ﻻ يوجد ملخص باللغة العربية
We present a theoretical model for supernova (SN) 2008D associated with the luminous X-ray transient 080109. The bolometric light curve and optical spectra of the SN are modelled based on the progenitor models and the explosion models obtained from hydrodynamic/nucleosynthetic calculations. We find that SN 2008D is a more energetic explosion than normal core-collapse supernovae, with an ejecta mass of Mej = 5.3 +- 1.0 Msun and a kinetic energy of E = 6.0 +- 2.5 x 10^{51} erg. The progenitor star of the SN has a 6-8 Msun He core with essentially no H envelope (< 5 x 10^{-4} Msun) prior to the explosion. The main-sequence mass of the progenitor is estimated to be Mms =20-25 Msun, with additional systematic uncertainties due to convection, mass loss, rotation, and binary effects. These properties are intermediate between those of normal SNe and hypernovae associated with gamma-ray bursts. The mass of the central remnant is estimated as 1.6 - 1.8 Msun, which is near the boundary between neutron star and black hole formation.
We present extensive early photometric (ultraviolet through near-infrared) and spectroscopic (optical and near-infrared) data on supernova (SN) 2008D as well as X-ray data analysis on the associated Swift/X-ray transient (XRT) 080109. Our data span a
We present BVRI photometry and optical spectroscopy of SN 2005bf near light maximum. The maximum phase is broad and occurred around 2005 May 7, about forty days after the shock breakout. SN 2005bf has a peak bolometric magnitude M_{bol}=-18.0pm 0.2:
We present a theoretical model for Type Ib supernova (SN) 2006jc. We calculate the evolution of the progenitor star, hydrodynamics and nucleosynthesis of the SN explosion, and the SN bolometric light curve (LC). The synthetic bolometric LC is compare
We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absol
The supernovae of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the