ﻻ يوجد ملخص باللغة العربية
We present BVRI photometry and optical spectroscopy of SN 2005bf near light maximum. The maximum phase is broad and occurred around 2005 May 7, about forty days after the shock breakout. SN 2005bf has a peak bolometric magnitude M_{bol}=-18.0pm 0.2: while this is not particularly bright, it occurred at an epoch significantly later than other SNe Ibc, indicating that the SN possibly ejected ~0.31 M_{sun} of 56Ni, which is more than the typical amount. The spectra of SN 2005bf around maximum are very similar to those of the Type Ib SNe 1999ex and 1984L about 25-35 days after explosion, displaying prominent He I, Fe II, Ca II H & K and the near-IR triplet P Cygni lines. Except for the strongest lines, He I absorptions are blueshifted by <~6500 km/s, and Fe II by ~7500-8000 km/s. No other SNe Ib have been reported to have their Fe II absorptions blueshifted more than their He I absorptions. Relatively weak H-alpha and very weak H-beta may also exist, blueshifted by ~15,000 km/s. We suggest that SN 2005bf was the explosion of a massive He star, possibly with a trace of a hydrogen envelope.
Observations and modeling for the light curve (LC) and spectra of supernova (SN) 2005bf are reported. This SN showed unique features: the LC had two maxima, and declined rapidly after the second maximum, while the spectra showed strengthening He line
We present a theoretical model for Type Ib supernova (SN) 2006jc. We calculate the evolution of the progenitor star, hydrodynamics and nucleosynthesis of the SN explosion, and the SN bolometric light curve (LC). The synthetic bolometric LC is compare
Every supernova hitherto observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing
We present a theoretical model for supernova (SN) 2008D associated with the luminous X-ray transient 080109. The bolometric light curve and optical spectra of the SN are modelled based on the progenitor models and the explosion models obtained from h
Late phase nebular spectra and photometry of Type Ib Supernova (SN) 2005bf taken by the Subaru telescope at ~ 270 and ~ 310 days since the explosion are presented. Emission lines ([OI]6300, 6363, [CaII]7291, 7324, [FeII]7155) show the blueshift of ~