ترغب بنشر مسار تعليمي؟ اضغط هنا

From Shock Breakout to Peak and Beyond: Extensive Panchromatic Observations of the Type Ib Supernova 2008D associated with Swift X-ray Transient 080109

371   0   0.0 ( 0 )
 نشر من قبل Maryam Modjaz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present extensive early photometric (ultraviolet through near-infrared) and spectroscopic (optical and near-infrared) data on supernova (SN) 2008D as well as X-ray data analysis on the associated Swift/X-ray transient (XRT) 080109. Our data span a time range of 5 hours before the detection of the X-ray transient to 150 days after its detection, and detailed analysis allowed us to derive constraints on the nature of the SN and its progenitor; throughout we draw comparisons with results presented in the literature and find several key aspects that differ. We show that the X-ray spectrum of XRT 080109 can be fit equally well by an absorbed power law or a superposition of about equal parts of both power law and blackbody. Our data first established that SN 2008D is a spectroscopically normal SN Ib (i.e., showing conspicuous He lines), and show that SN 2008D had a relatively long rise time of 18 days and a modest optical peak luminosity. The early-time light curves of the SN are dominated by a cooling stellar envelope (for Delta t~0.1- 4 day, most pronounced in the blue bands) followed by 56^Ni decay. We construct a reliable measurement of the bolometric output for this stripped-envelope SN, and, combined with estimates of E_K and M_ej from the literature, estimate the stellar radius R_star of its probable Wolf-Rayet progenitor. According to the model of Waxman et al. and of Chevalier & Fransson, we derive R_star^{W07}= 1.2+/-0.7 R_sun and R_star^{CF08}= 12+/-7 R_sun, respectively; the latter being more in line with typical WN stars. Spectra obtained at 3 and 4 months after maximum light show double-peaked oxygen lines that we associate with departures from spherical symmetry, as has been suggested for the inner ejecta of a number of SN Ib cores.



قيم البحث

اقرأ أيضاً

We present a theoretical model for supernova (SN) 2008D associated with the luminous X-ray transient 080109. The bolometric light curve and optical spectra of the SN are modelled based on the progenitor models and the explosion models obtained from h ydrodynamic/nucleosynthetic calculations. We find that SN 2008D is a more energetic explosion than normal core-collapse supernovae, with an ejecta mass of Mej = 5.3 +- 1.0 Msun and a kinetic energy of E = 6.0 +- 2.5 x 10^{51} erg. The progenitor star of the SN has a 6-8 Msun He core with essentially no H envelope (< 5 x 10^{-4} Msun) prior to the explosion. The main-sequence mass of the progenitor is estimated to be Mms =20-25 Msun, with additional systematic uncertainties due to convection, mass loss, rotation, and binary effects. These properties are intermediate between those of normal SNe and hypernovae associated with gamma-ray bursts. The mass of the central remnant is estimated as 1.6 - 1.8 Msun, which is near the boundary between neutron star and black hole formation.
152 - Anthony L. Piro 2009
The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakou t shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV) lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m=24) will see it out to a distance of approximately 80 Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to study the early rise dictated by the shock heating (at about 20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion induced collapse to a neutron star, but with a lower occurrence rate.
94 - A. Calzavara 2003
We investigate the potential of the upcoming LOBSTER space observatory (due circa 2009) to detect soft X-ray flashes from shock breakout in supernovae, primarily from Type II events. LOBSTER should discover many SN breakout flashes, although the numb er is sensitive to the uncertain distribution of extragalactic gas columns. X-ray data will constrain the radii of their progenitor stars far more tightly than can be accomplished with optical observations of the SN light curve. We anticipate the appearance of blue supergiant explosions (SN 1987A analogs), which will uncover a population of these underluminous events. We consider also how the mass, explosion energy, and absorbing column can be constrained from X-ray observables alone and with the assistance of optically-determined distances. These conclusions are drawn using known scaling relations to extrapolate, from previous numerical calculations, the LOBSTER response to explosions with a broad range of parameters. We comment on a small population of flashes with 0.2 < z < 0.8 that should exist as transient background events in XMM, Chandra, and ROSAT integrations.
Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic core-collapse supernova. Such events are usually only detected at least a few days after the star has exploded. Observation s of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars
Neutrinos and gravitational waves are the only direct probes of the inner dynamics of a stellar core collapse. They are also the first signals to arrive from a supernova and, if detected, establish the moment when the shock wave is formed that unbind s the stellar envelope and later initiates the optical display upon reaching the stellar surface with a burst of UV and X-ray photons, the shock breakout (SBO). We discuss how neutrino observations can be used to trigger searches to detect the elusive SBO event. Observation of the SBO would provide several important constraints on progenitor structure and the explosion, including the shock propagation time (the duration between the neutrino burst and SBO), an observable that is important in distinguishing progenitor types. Our estimates suggest that next generation neutrino detectors could exploit the overdensity of nearby SNe to provide several such triggers per decade, more than an order of magnitude improvement over the present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا