ﻻ يوجد ملخص باللغة العربية
We study a one-parameter family of the fourth-order ordinary differential equations obtained by similarity reduction of the modifed Sawada-Kotera equation. We show that the birational transformations take this equation to the polynomial Hamiltonian system in dimension four. We make this polynomial Hamiltonian from the viewpoint of accessible singularity and local index. We also give its symmetry and holomorphy conditions. These properties are new. Moreover, we introduce a symmetric form in dimension five for this Hamiltonian system by taking the two invariant divisors as the dependent variables. Thanks to the symmetric form, we show that this system admits the affine Weyl group symmetry of type $A_2^{(2)}$ as the group of its B{a}cklund transformations.
We apply the theory of Lie symmetries in order to study a fourth-order $1+2$ evolutionary partial differential equation which has been proposed for the image processing noise reduction. In particular we determine the Lie point symmetries for the spec
This note reports on the recent advancements in the search for explicit representation, in classical special functions, of the solutions of the fourth-order ordinary differential equations named Bessel-type, Jacobi-type, Laguerre-type, Legendre-type.
We provide a general solution for a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary par
We present a novel method for computing the nonperturbative kinetic term of the gluon propagator from an exactly solvable ordinary differential equation, whose origin is the fundamental Slavnov-Taylor identity satisfied by the three-gluon vertex, eva
The biharmonic equation, as well as its nonlinear and inhomogeneous generalizations, plays an important role in engineering and physics. In particular the focusing biharmonic nonlinear Schr{o}dinger equation, and its standing wave solutions, have bee