ﻻ يوجد ملخص باللغة العربية
We apply the theory of Lie symmetries in order to study a fourth-order $1+2$ evolutionary partial differential equation which has been proposed for the image processing noise reduction. In particular we determine the Lie point symmetries for the specific 1+2 partial differential equations and we apply the invariant functions to determine similarity solutions. For the static solutions we observe that the reduced fourth-order ordinary differential equations are reduced to second-order ordinary differential equations which are maximally symmetric. Finally, nonstatic closed-form solutions are also determined.
We study a one-parameter family of the fourth-order ordinary differential equations obtained by similarity reduction of the modifed Sawada-Kotera equation. We show that the birational transformations take this equation to the polynomial Hamiltonian s
When studying boundary value problems for some partial differential equations arising in applied mathematics, we often have to study the solution of a system of partial differential equations satisfied by hypergeometric functions and find explicit li
We discuss some open problems and recent progress related to the 4th order Paneitz operator and Q curvature in dimensions other than 4.
This paper develops a fractional stochastic partial differential equation (SPDE) to model the evolution of a random tangent vector field on the unit sphere. The SPDE is governed by a fractional diffusion operator to model the L{e}vy-type behaviour of
While not generally a conservation law, any symmetry of the equations of motion implies a useful reduction of any second-order equationto a first-order equation between invariants, whose solutions (first integrals) can then be integrated by quadratur