ترغب بنشر مسار تعليمي؟ اضغط هنا

Elliptic and parabolic second-order PDEs with growing coefficients

144   0   0.0 ( 0 )
 نشر من قبل Nicolai Krylov
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a second-order parabolic equation in $bR^{d+1}$ with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Holder continuous in the space variables. We show that global Schauder estimates hold even in this case. The proof introduces a new localization procedure. Our results show that the constant appearing in the classical Schauder estimates is in fact independent of the $L_{infty}$-norms of the lower order coefficients. We also give a proof of uniqueness which is of independent interest even in the case of bounded coefficients.



قيم البحث

اقرأ أيضاً

136 - Hongjie Dong , N.V. Krylov 2009
The solvability in Sobolev spaces $W^{1,2}_p$ is proved for nondivergence form second order parabolic equations for $p>2$ close to 2. The leading coefficients are assumed to be measurable in the time variable and two coordinates of space variables, a nd almost VMO (vanishing mean oscillation) with respect to the other coordinates. This implies the $W^{2}_p$-solvability for the same $p$ of nondivergence form elliptic equations with leading coefficients measurable in two coordinates and VMO in the others. Under slightly different assumptions, we also obtain the solvability results when $p=2$.
154 - N.V. Krylov 2008
The solvability in $W^{2}_{p}(bR^{d})$ spaces is proved for second-order elliptic equations with coefficients which are measurable in one direction and VMO in the orthogonal directions in each small ball with the direction depending on the ball. This generalizes to a very large extent the case of equations with continuous or VMO coefficients.
68 - Seick Kim , Longjuan Xu 2020
We construct Greens functions for second order parabolic operators of the form $Pu=partial_t u-{rm div}({bf A} abla u+ boldsymbol{b}u)+ boldsymbol{c} cdot abla u+du$ in $(-infty, infty) times Omega$, where $Omega$ is an open connected set in $mathb b{R}^n$. It is not necessary that $Omega$ to be bounded and $Omega = mathbb{R}^n$ is not excluded. We assume that the leading coefficients $bf A$ are bounded and measurable and the lower order coefficients $boldsymbol{b}$, $boldsymbol{c}$, and $d$ belong to critical mixed norm Lebesgue spaces and satisfy the conditions $d-{rm div} boldsymbol{b} ge 0$ and ${rm div}(boldsymbol{b}-boldsymbol{c}) ge 0$. We show that the Greens function has the Gaussian bound in the entire $(-infty, infty) times Omega$.
105 - Hongjie Dong , Tuoc Phan 2020
We study both divergence and non-divergence form parabolic and elliptic equations in the half space ${x_d>0}$ whose coefficients are the product of $x_d^alpha$ and uniformly nondegenerate bounded measurable matrix-valued functions, where $alpha in (- 1, infty)$. As such, the coefficients are singular or degenerate near the boundary of the half space. For equations with the conormal or Neumann boundary condition, we prove the existence, uniqueness, and regularity of solutions in weighted Sobolev spaces and mixed-norm weighted Sobolev spaces when the coefficients are only measurable in the $x_d$ direction and have small mean oscillation in the other directions in small cylinders. Our results are new even in the special case when the coefficients are constants, and they are reduced to the classical results when $alpha =0$
255 - Hongjie Dong , Seick Kim 2015
Under various conditions, we establish Schauder estimates for both divergence and non-divergence form second-order elliptic and parabolic equations involving Holder semi-norms not with respect to all, but only with respect to some of the independent variables. A novelty of our results is that the coefficients are allowed to be merely measurable with respect to the other independent variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا