ﻻ يوجد ملخص باللغة العربية
The gauge invariance of the muonium-antimuonium ($Mbar{M}$) oscillation time scale is explicitly demonstrated in the Standard Model modified only by the inclusion of singlet right-handed neutrinos and allowing for general renormalizable interactions. The see-saw mechanism is exploited resulting in three light Majorana neutrinos and three heavy Majorana neutrinos with mass scale $M_Rgg M_W$. The leading order matrix element contribution to the $Mbar{M}$ oscillation process is computed in $R_xi$ gauge and shown to be $xi$ independent thereby establishing the gauge invariance to this order. Present experimental limits resulting from the non-observation of the oscillation process sets a lower limit on $M_R$ roughly of order 600 GeV.
The electron and muon number violating muonium-antimuonium oscillation process in an extended Minimal Supersymmetric Standard Model is investigated. The Minimal Supersymmetric Standard Model is modified by the inclusion of three right-handed neutrino
We consider an extension of the standard electroweak model with three Higgs doublets and global $B-L$ and $mathbb{Z}_2$ symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We calculated all the mass spectra in the scal
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are al
We point out that the recent excess observed in searches for a right-handed gauge boson W_R at CMS can be explained in a left-right symmetric model with D parity violation. In a class of SO(10) models, in which D parity is broken at a high scale, the
In a supersymmetric model, the presence of a right handed neutrino with a large Yukawa coupling $f_{ u}$ would affect slepton masses via its contribution to the renormalization group evolution between the grand unification and weak scales. Assuming a