ترغب بنشر مسار تعليمي؟ اضغط هنا

Muonium-Antimuonium Oscillations in an extended Minimal Supersymmetric Standard Model with right-handed neutrinos

142   0   0.0 ( 0 )
 نشر من قبل Boyang Liu
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Boyang Liu




اسأل ChatGPT حول البحث

The electron and muon number violating muonium-antimuonium oscillation process in an extended Minimal Supersymmetric Standard Model is investigated. The Minimal Supersymmetric Standard Model is modified by the inclusion of three right-handed neutrino superfields. While the model allows the neutrino mass terms to mix among the different generations, the sneutrino and slepton mass terms have only intra-generation lepton number violation but not inter-generation lepton number mixing. So doing, the muonium-antimuonium conversion can then be used to constrain those model parameters which avoid further constraint from the $muto egamma$ decay bounds. For a wide range of parameter values, the contributions to the muonium-antimuonium oscillation time scale are at least two orders of magnitude below the sensivity of current experiments. However, if the ratio of the two Higgs field VEVs, $tanbeta$, is very small, there is a limited possibility that the contributions are large enough for the present experimental limit to provide an inequality relating $tanbeta$ with the light neutrino mass scale $m_ u$ which is generated by see-saw mechanism. The resultant lower bound on $tanbeta$ as a function of $m_ u$ is more stringent than the analogous bounds arising from the muon and electron anomalous magnetic moments as computed using this model.



قيم البحث

اقرأ أيضاً

In this article we consider the Standard Model extended by a number of (light) right-handed neutrinos, and assume the presence of some heavy physics that cannot be directly produced, but can be probed by its low-energy effective interactions. Within this scenario, we obtain all the gauge-invariant dimension-seven effective operators, and determine whether each of the operators can be generated at tree-level by the heavy physics, or whether it is necessarily loop generated. We then use the tree-generated operators, including those containing right-handed neutrinos, to put limits on the scale of new physics $ Lambda $ using low-energy measurements. We also study the production of same-sign dileptons at the Large Hadron Collider (LHC) and determine the constraints on the heavy physics that can be derived form existing data, as well as the reach in probing $ Lambda $ expected from future runs of this collider.
367 - J.W. van Holten 2015
In this lecture I review the most relevant modifications of the Standard Model of particle physics that result from inclusion of right-handed neutrinos and a new neutral gauge boson Z.
108 - Takeshi Araki , Y. F. Li 2011
The extension of the minimal standard model by three right-handed sterile neutrinos with masses smaller than the electroweak scale (nuMSM) is discussed in a Q_6 flavor symmetry framework. The lightness of the keV sterile neutrino and the near mass de generacy of two heavier sterile neutrinos are naturally explained by exploiting group properties of Q_6. A normal hierarchical mass spectrum and an approximately mu-tau symmetric mass matrix are predicted for three active neutrinos. Nonzero theta_{13} can be obtained together with a deviation of theta_{23} from the maximality, where both mixing angles are consistent with the latest global data including T2K and MINOS results. Furthermore, the tiny active-sterile mixing is related to the mass ratio between the lightest active and lightest sterile neutrinos.
116 - Boyang Liu 2008
The gauge invariance of the muonium-antimuonium ($Mbar{M}$) oscillation time scale is explicitly demonstrated in the Standard Model modified only by the inclusion of singlet right-handed neutrinos and allowing for general renormalizable interactions. The see-saw mechanism is exploited resulting in three light Majorana neutrinos and three heavy Majorana neutrinos with mass scale $M_Rgg M_W$. The leading order matrix element contribution to the $Mbar{M}$ oscillation process is computed in $R_xi$ gauge and shown to be $xi$ independent thereby establishing the gauge invariance to this order. Present experimental limits resulting from the non-observation of the oscillation process sets a lower limit on $M_R$ roughly of order 600 GeV.
Several models of neutrino masses predict the existence of neutral heavy leptons. Here, we review current constraints on heavy neutrinos and apply a new formalism separating new physics from Standard Model. We discuss also the indirect effect of extra heavy neutrinos in oscillation experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا