ترغب بنشر مسار تعليمي؟ اضغط هنا

Signal of Right-Handed Charged Gauge Bosons at the LHC?

121   0   0.0 ( 0 )
 نشر من قبل Frank Deppisch
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We point out that the recent excess observed in searches for a right-handed gauge boson W_R at CMS can be explained in a left-right symmetric model with D parity violation. In a class of SO(10) models, in which D parity is broken at a high scale, the left-right gauge symmetry breaking scale is naturally small, and at a few TeV the gauge coupling constants satisfy g_R ~ 0.6 g_L. Such models therefore predict a right-handed charged gauge boson W_R in the TeV range with a suppressed gauge coupling as compared to the usually assumed manifest left-right symmetry case g_R = g_L. The recent CMS data show excess events which are consistent with the cross section predicted in the D parity breaking model for 1.9 TeV < M_{W_R} < 2.4 TeV. If the excess is confirmed, it would in general be a direct signal of new physics beyond the Standard Model at the LHC. A TeV scale W_R would for example not only rule out SU(5) grand unified theory models. It would also imply B-L violation at the TeV scale, which would be the first evidence for baryon or lepton number violation in nature and it has strong implications on the generation of neutrino masses and the baryon asymmetry in the Universe.



قيم البحث

اقرأ أيضاً

In the Left-Right Symmetric Model (LRSM), box diagrams involving the charged right-handed gauge boson W_R may affect B-Bbar mixing as well as CP asymmetries in neutral B decays. The smallness of the epsilon_K parameter in the neutral K-meson system p laces severe constraints on the right-handed quark mixing matrix V^R, and reduces the number of its effective phases to one. W_R exchange gives a large contribution to B-Bbar mixing when the mass of the W_R boson is up to or higher than 8 TeV, depending on the V^R case, the B_d,s meson, and the asymmetry. The allowed regions of the CP violating asymmetries sin(2beta), sin(gamma), sin(2alpha), and sin(2phi_s), as well as x_s, are calculated as a function of the W_R mass. The results of the LRSM other than for the well measured sin(2beta) show allowable regions that are much broader than that for the Standard Model, showing that new experiments can indicate a presence of new physics, or significantly push up the limits on the W_R mass.
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are al so needed to do $U(1)_L$ anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.
A very light (GeV scale) dark gauge boson ($Z$) is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the $3.6 sigma$ deviation in the muon $g$-2 measurement. We suggest top quark decays as a venue t o search for light dark force carriers at the LHC. Such $Z$s can be easily boosted, and they can decay into highly collimated leptons (lepton-jet) with large branching ratio. We investigate a scenario where a top quark decays to $b W$ accompanied by one or multiple dark force carriers and find that such a scenario could be easily probed at the early stage of LHC Run 2.
Left-Right twin Higgs(LRTH) model predicts the existence of a pair of charged Higgs $phi^{pm}$. In this paper, we study the production of the charged Higgs bosons pair $phi^{pm}$ via the process $e^{+}e^{-}to phi^{+}phi^{-}$ at the International Line ar Collider(ILC). The numerical results show that the production rates are at the level of several tens fb, this process can produce the adequate distinct multi-jet final states and the SM background can be efficiently reduced. We also discuss the charged Higgs boson pair production via the process $qbar{q}to phi^{+}phi^{-}$ at the $CERN$ Large Hadron Collider(LHC) and estimate there production rates. We find that, as long as the charged Higgs bosons are not too heavy, they can be abundantly produced at the LHC. The possible signatures of these new particles might be detected at the ILC and LHC experiments.
Extending the Standard Model (SM) scalar sector via one or multiple Higgs field(s) in higher representation brings one or more charged Higgs bosons in the spectrum. Some of these gauge representations with appropriate hypercharge can bring up doubly charged Higgs boson and can be easily distinguished from the existing models with only singly charged Higgs boson. In this study we focus on distinguishing the singly charged Higgs bosons from different representations, viz. doublets and triplets of $SU(2)_L$ gauge group. We consider a supersymmetric extension of SM with a gauge singlet and $SU(2)_L$ triplet with $Y=0$ as a benchmark scenario with the possibility of rich phenomenology due to existence of light pseudoscalar for $Z_3$ symmetric superpotential. A detailed collider simulation considering all the SM backgrounds has been carried out in order to classify the final states which are favourable to charged Higgs boson from one particular representation than others. We show that such different representations can be probed an distinguished via looking at single charged Higgs boson phenomenology at the LHC with 14 TeV center of mass energy within $sim 50$ fb$^{-1}$ of integrated luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا