ترغب بنشر مسار تعليمي؟ اضغط هنا

A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects

106   0   0.0 ( 0 )
 نشر من قبل Pekka Alitalo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of a transmission-line network, designed for cloaking applications in the microwave region. The network is used for channelling microwave energy through an electrically dense array of metal objects, which is basically impenetrable to the impinging electromagnetic radiation. With the designed transmission-line network the waves emitted by a source placed in an air-filled waveguide, are coupled into the network and guided through the array of metallic objects. Our goal is to illustrate the simple manufacturing, assembly, and the general feasibility of these types of cloaking devices.



قيم البحث

اقرأ أيضاً

We consider a novel method of cloaking objects from the surrounding electromagnetic fields in the microwave region. The method is based on transmission-line networks that simulate the wave propagation in the medium surrounding the cloaked object. The electromagnetic fields from the surrounding medium are coupled into the transmission-line network that guides the waves through the cloak thus leaving the cloaked object undetected. The cloaked object can be an array or interconnected mesh of small inclusions that fit inside the transmission-line network.
Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or pa ired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.
We show that in order to guide waves, it is sufficient to periodically truncate their edges. The modes supported by this type of wave guide propagate freely between the slits, and the propagation pattern repeats itself. We experimentally demonstrate this general wave phenomenon for two types of waves: (i) plasmonic waves propagating on a metal-air interface that are periodically blocked by nanometric metallic walls, and (ii) surface gravity water waves whose evolution is recorded, the packet is truncated, and generated again to show repeated patterns. This guiding concept is applicable for a wide variety of waves.
205 - Yuqian Ye , Yi Jin 2009
y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold e nhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires due to the excitation of the electric dipole-like resonance, and then effectively squeezed into and through the subwavelength slits.
141 - M. Jerger , S. Poletto , P. Macha 2011
Frequency-selective readout for superconducting qubits opens the way towards scaling qubit circuits up without increasing the number of measurement lines. Here we demonstrate the readout of an array of 7 flux qubits located on the same chip. Each qub it is placed near an individual lambda/4 resonator which, in turn, is coupled to a common microwave transmission line. We performed spectroscopy of all qubits and determined their parameters in a single measurement run.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا