ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of a Qubit Array via a Single Transmission Line

142   0   0.0 ( 0 )
 نشر من قبل Stefano Poletto
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frequency-selective readout for superconducting qubits opens the way towards scaling qubit circuits up without increasing the number of measurement lines. Here we demonstrate the readout of an array of 7 flux qubits located on the same chip. Each qubit is placed near an individual lambda/4 resonator which, in turn, is coupled to a common microwave transmission line. We performed spectroscopy of all qubits and determined their parameters in a single measurement run.



قيم البحث

اقرأ أيضاً

We experimentally investigate the detection mechanism in a meandered molybdenum silicide (MoSi) superconducting nanowire single-photon detector by characterising the detection probability as a function of bias current in the wavelength range of 750 t o 2050 nm. Contrary to some previous observations on niobium nitride (NbN) or tungsten silicide (WSi) detectors, we find that the energy-current relation is nonlinear in this range. Furthermore, thanks to the presence of a saturated detection efficiency over the whole range of wavelengths, we precisely quantify the shape of the curves. This allows a detailed study of their features, which are indicative of both Fano fluctuations and position-dependent effects.
We describe the read-out process of the state of a Josephson flux qubit via solitons in Josephson transmission lines (JTL) as they are in use in the standard rapid single flux quantum (RSFQ) technology. We consider the situation where the information about the state of the qubit is stored in the time delay of the soliton. We analyze dissipative underdamped JTLs, take into account their jitter, and provide estimates of the measuring time and efficiency of the measurement for relevant experimental parameters.
We observed the dynamics of a superconducting flux qubit coupled to an extrinsic quantum system (EQS). The presence of the EQS is revealed by an anticrossing in the spectroscopy of the qubit. The excitation of a two-photon transition to the third exc ited state of the qubit-EQS system allows us to extract detailed information about the energy level structure and the coupling of the EQS. We deduce that the EQS is a two-level system, with a transverse coupling to the qubit. The transition frequency and the coupling of the EQS changed during experiments, which supports the idea that the EQS is a two-level system of microscopic origin.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
The attributes of group-V-donor spins implanted in an isotopically purified $^{28}$Si crystal make them attractive qubits for large-scale quantum computer devices. Important features include long nuclear and electron spin lifetimes of $^{31}$P, hyper fine clock transitions in $^{209}$Bi and electrically controllable $^{123}$Sb nuclear spins. However, architectures for scalable quantum devices require the ability to fabricate deterministic arrays of individual donor atoms, placed with sufficient precision to enable high-fidelity quantum operations. Here we employ on-chip electrodes with charge-sensitive electronics to demonstrate the implantation of single low-energy (14 keV) P$^+$ ions with an unprecedented $99.87pm0.02$% confidence, while operating close to room-temperature. This permits integration with an atomic force microscope equipped with a scanning-probe ion aperture to address the critical issue of directing the implanted ions to precise locations. These results show that deterministic single-ion implantation can be a viable pathway for manufacturing large-scale donor arrays for quantum computation and other applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا