ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film

205   0   0.0 ( 0 )
 نشر من قبل Yuqian Ye
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

y coating a cover layer with metallization of cut wire array, the transmission of transverse electric waves (TE; the electric field is parallel to the slits) through subwavelength slits in a thin metallic film is significantly enhanced. An 800-fold enhanced transmission is obtained compared to the case without the cut wires. It is demonstrated that a TE incident wave is highly confined by the cut wires due to the excitation of the electric dipole-like resonance, and then effectively squeezed into and through the subwavelength slits.



قيم البحث

اقرأ أيضاً

Recent numerical studies have demonstrated the possibility of achieving substantial enhancements in the transmission of transverse-electric-polarized electromagnetic fields through subwavelength slits in a thin metallic screen by placing single or pa ired metallic cut-wire arrays at a close distance from the screen. In this Letter, we report on the first experimental evidence of such extraordinary transmission phenomena, via microwave (X/Ku-band) measurements on printed-circuit-board prototypes. Experimental results agree very well with full-wave numerical predictions, and indicate an intrinsic robustness of the enhanced transmission phenomena with respect to fabrication tolerances and experimental imperfections.
120 - X. R. Huang , R. W. Peng , Z. Wang 2009
We present a concrete picture of spoof surface plasmons (SSPs) combined with cavity resonance to clarify the basic mechanism underlying extraordinary light transmission through metal films with subwavelength slits or holes. This picture may indicate a general mechanism of metallic nanostructure optics: When light is incident on a non-planar conducting surface, the free electrons cannot move homogeneously in response to the incident electric field, i.e., their movement can be impeded at the rough parts, forming inhomogeneous charge distributions. The oscillating charges/dipoles then emit photons (similar to Thomson scattering of x rays by oscillating electrons), and the interference between the photons may give rise to anomalous transmission, reflection or scattering.
We theoretically investigate second harmonic generation that originates from the nonlinear, magnetic Lorentz force term from single and multiple apertures carved on thick, opaque metal substrates. The linear transmission properties of apertures on me tal substrates have been previously studied in the context of the extraordinary transmission of light. The transmission process is driven by a number of physical mechanisms, whose characteristics and relative importance depend on the thickness of the metallic substrate, slit size, and slit separation. In this work we show that a combination of cavity effects and surface plasmon generation gives rise to enhanced second harmonic generation in the regime of extraordinary transmittance of the pump field. We have studied both forward and backward second harmonic generation conversion efficiencies as functions of the geometrical parameters, and how they relate to pump transmission efficiency. The resonance phenomenon is evident in the generated second harmonic signal, as conversion efficiency depends on the duration of incident pump pulse, and hence its bandwidth. Our results show that the excitation of tightly confined modes as well as the combination of enhanced transmission and nonlinear processes can lead to several potential new applications such as photo-lithography, scanning microscopy, and high-density optical data storage devices.
447 - Jun Xu , Hyungjin Ma , 2014
Using a holographic approach, we experimentally study the near-field intensity distribution of light squeezed through an isolated subwavelength plasmonic hole in a thin metallic film. Our experiments revealed an in-plane electric dipole moment excite d near the isolated hole. By analyzing the fringe patterns formed between the in-plane dipole and plane wave illumination, both the transmission coefficient and phase shift of the dipole can be retrieved. We also observed opposite phases of the excited dipoles from the subwavelength dent and protrusion in the metallic film, in good agreement with the prediction from our model. Our approach can be used to study the microscopic process of the light-structure interaction for the plasmonic and nanophotonic systems with potential applications in high density optical data storages.
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrate enhancement (suppression) by as much as a factor of 6 (9) when normalized to that of an isolated slit. Pronounced minima in the transmitted intensity were observed at array pitches corresponding to lambda_SPP, 2lambda_SPP, and 3lambda_SPP where lambda_SPP is the wavelength of the surface plasmon polariton (SPP). Increasing the number of slits to more than four does not increase appreciably the per-slit transmission intensity. These results are consistent with a model for interference between SPPs and the incident wave that fits well the measured transmitted intensity profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا