ﻻ يوجد ملخص باللغة العربية
A path integral Monte Carlo method based on the worm algorithm has been developed to compute the chemical potential of interacting bosonic quantum fluids. By applying it to finite-sized systems of helium-4 atoms, we have confirmed that the chemical potential scales inversely with the number of particles to lowest order. The introduction of a simple scaling form allows for the extrapolation of the chemical potential to the thermodynamic limit, where we observe excellent agreement with known experimental results for helium-4 at saturated vapor pressure. We speculate on future applications of the proposed technique, including its use in studies of confined quantum fluids.
The ground-state properties of spin-polarized tritium T$downarrow$ at zero temperature are obtained by means of diffusion Monte Carlo calculations. Using an accurate {em ab initio} T$downarrow$-T$downarrow$ interatomic potential we have studied its l
P.B. Chakraborty {it et al.}, Phys. Rev. B {bf 70}, 144411 (2004)) study of the LiHoF$_4$ Ising magnetic material in an external transverse magnetic field $B_x$ show a discrepancy with the experimental results, even for small $B_x$ where quantum fluc
We report results of both Diffusion Quantum Monte Carlo(DMC) method and Reptation Quantum Monte Carlo(RMC) method on the potential energy curve of the helium dimer. We show that it is possible to obtain a highly accurate description of the helium dim
We study the thermodynamics of Ising spins on the triangular kagome lattice (TKL) using exact analytic methods as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and sus
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, bu