ﻻ يوجد ملخص باللغة العربية
In this paper, we describe a robust quantum cryptography scheme with a heralded single photon source based on the decoy-state method, which has been shown by numerical simulations to be advantageous compared with many other practical schemes not only with respect to the secure key generation rate but also to secure transmission distance. We have experimentally tested this scheme, and the results support the conclusions from numerical simulations well. Although there still exist many deficiencies in our present systems, its still sufficient to demonstrate the advantages of the scheme. Besides, even when cost and technological feasibility are taken into account, our scheme is still quite promising in the implementation of tomorrows quantum cryptography.
Blind quantum computation is a scheme that adds unconditional security to cloud quantum computation. In the protocol proposed by Broadbent, Fitzsimons, and Kashefi, the ability to prepare and transmit a single qubit is required for a user (client) wh
The realization of an ultra-fast source of heralded single photons emitted at the wavelength of 1540 nm is reported. The presented strategy is based on state-of-the-art telecom technology, combined with off-the-shelf fiber components and waveguide no
A photon source based on postselection from entangled photon pairs produced by parametric frequency down-conversion is suggested. Its ability to provide good approximations of single-photon states is examined. Application of this source in quantum cr
We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adj
Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast cu