ترغب بنشر مسار تعليمي؟ اضغط هنا

Field test of a practical secure communication network with decoy-state quantum cryptography

249   0   0.0 ( 0 )
 نشر من قبل Zeng-Bing Chen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.



قيم البحث

اقرأ أيضاً

Twin-field quantum key distribution (TF-QKD), which is immune to all possible detector side channel attacks, enables two remote legitimate users to perform secure communications without quantum repeaters. With the help of a central node, TF-QKD is ex pected to overcome the linear key-rate constraint using current technologies. However, the security of the former TF-QKD protocols relies on the hypothesis of infinite-key and stable sources. In this paper, we present the finite-key analysis of a practical decoy-state twin-field quantum key distribution with variant statistical fluctuation models. We examine the composable security of the protocol with intensity fluctuations of unstable sources employing Azumas inequality. Our simulation results indicate that the secret key rate is able to surpass the linear key-rate bound with limited signal pulses and intensity fluctuations. In addition, the effect of intensity fluctuations is extremely significant for small size of total signals.
In this paper, we describe a robust quantum cryptography scheme with a heralded single photon source based on the decoy-state method, which has been shown by numerical simulations to be advantageous compared with many other practical schemes not only with respect to the secure key generation rate but also to secure transmission distance. We have experimentally tested this scheme, and the results support the conclusions from numerical simulations well. Although there still exist many deficiencies in our present systems, its still sufficient to demonstrate the advantages of the scheme. Besides, even when cost and technological feasibility are taken into account, our scheme is still quite promising in the implementation of tomorrows quantum cryptography.
Quantum secure direct communication (QSDC) based on entanglement can directly transmit confidential information. However, the inability to simultaneously distinguish the four sets of encoded entangled states limits its practical application. Here, we explore a deterministic QSDC network based on time-energy entanglement and sum-frequency generation. 15 users are in a fully connected QSDC network, and the fidelity of the entangled state shared by any two users is greater than 97%. The results show that when any two users are performing QSDC over 40 kilometers of optical fiber, the fidelity of the entangled state shared by them is still greater than 95%, and the rate of information transmission can be maintained above 1Kbp/s. Our Letter demonstrates the feasibility of a proposed QSDC network, and hence lays the foundation for the realization of satellite-based long-distance and global QSDC in the future.
Twin-Field quantum key distribution (TF-QKD) and its variants, e.g. Phase-Matching QKD, Sending-or-not-sending QKD, and No Phase Post-Selection TFQKD promise high key rates at long distance to beat the rate distance limit without a repeater. The secu rity proof of these protocols are based on decoy-state method, which is usually performed by actively modulating a variable optical attenuator together with a random number generator in practical experiments, however, active-decoy schemes like this may lead to side channel and could open a security loophole. To enhance the source security of TF-QKD, in this paper, we propose passive-decoy based TF-QKD, in which we combine TF-QKD with the passive-decoy method. And we present a simulation comparing the key generation rate with that in active-decoy, the result shows our scheme performs as good as active decoy TF-QKD, and our scheme could reach satisfactory secret key rates with just a few photon detectors. This shows our work is meaningful in practice.
Quantum key distribution establishes a secret string of bits between two distant parties. Of concern in weak laser pulse schemes is the especially strong photon number splitting attack by an eavesdropper, but the decoy state method can detect this at tack with current technology, yielding a high rate of secret bits. In this Letter, we develop rigorous security statements in the case of finite statistics with only a few decoy states, and we present the results of simulations of an experimental setup of a decoy state protocol that can be simply realized with current technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا