ﻻ يوجد ملخص باللغة العربية
Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast custom-made pulse generator controlling an optical shutter (a LiNbO3 waveguide optical switch) on the output of the source. This source has a second-order autocorrelation g^{(2)}(0)=0.005(7), and an Output Noise Factor (defined as the ratio of the number of noise photons to total photons at the source output channel) of 0.25(1)%. These are the best performance characteristics reported to date.
We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programable gate array controlled optical switch.
Blind quantum computation is a scheme that adds unconditional security to cloud quantum computation. In the protocol proposed by Broadbent, Fitzsimons, and Kashefi, the ability to prepare and transmit a single qubit is required for a user (client) wh
We propose a scheme to implement a heralded quantum memory for single-photon polarization qubits with a single atom trapped in an optical cavity. In this scheme, an injected photon only exchanges quantum state with the atom, so that the heralded stor
Heralded single photon sources are often implemented using spontaneous parametric downconversion, but their quality can be restricted by optical loss, double pair emission and detector dark counts. Here, we show that the performance of such sources c
Heralded single photon source (HSPS) is an important way in generating genuine single photon, having advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off between the heralded single photon rate