ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity of bulk MgB2 + nano(n)-SiC composite system: A high field magnetization study

339   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of nano(n)-SiC addition on the crystal structure, critical temperature (Tc), critical current density (Jc) and flux pinning in MgB2 superconductor. X-ray diffraction patterns show that all the samples have MgB2 as the main phase with very small amount of MgO, further with n-SiC addition the presence of Mg2Si is also noted and confirmed by SEM & EDS. The Tc value for the pure MgB2 is 18.9K under 8 Tesla applied field, while is 20.8K for the 10-wt % n-SiC doped sample under the same field. This points towards the increment in upper-critical field value with n-SiC addition. The irreversibility field (Hirr) for the 5% n-SiC added sample reached 11.3, 10 and 5.8 Tesla, compared to 7.5, 6.5, and 4.2 Tesla for the pure MgB2 at 5, 10 and 20K respectively. The critical current density (Jc) for the 5-wt % n-SiC added sample is increased by a factor of 35 at 10K and 6.5 Tesla field and by a factor 20 at 20K and 4.2 Tesla field. These results are understood on the basis of superconducting condensate (sigma band) disorder and ensuing intrinsic pining due to B site C substitution clubbed with further external pinning due to available n-SiC/Mg2Si pins in the composite system.



قيم البحث

اقرأ أيضاً

We study the effect of synthesis temperature on the phase formation in nano(n)-SiC added bulk MgB2 superconductor. In particular we study: lattice parameters, amount of carbon (C) substitution, microstructure, critical temperature (Tc), irreversibili ty field (Hirr), critical current density (Jc), upper critical field (Hc2) and flux pinning. Samples of MgB2+(n-SiC)x with x=0.0, 0.05 & 0.10 were prepared at four different synthesis temperatures i.e. 850, 800, 750, and 700oC with the same heating rate as 10oC/min. We found 750oC as the optimal synthesis temperature for n-SiC doping in bulk MgB2 in order to get the best superconducting performance in terms of Jc, Hc2 and Hirr. Carbon (C) substitution enhances the Hc2 while the low temperature synthesis is responsible for the improvement in Jc due to the smaller grain size, defects and nano-inclusion induced by C incorporation into MgB2 matrix, which is corroborated by elaborative HRTEM (high-resolution transmission electron microscopy) results. We optimized the the Tc(R=0) of above 15K for the studied n-SiC doped and 750 0C synthesized MgB2 under 140 KOe field, which is one of the highest values yet obtained for variously processed and nano-particle added MgB2 in literature to our knowledge.
Polycrystalline MgB2-nDx (x= 0 to 0.1) samples are synthesized by solid-state route with ingredients of Mg, B and n-Diamond. The results from magneto-transport and magnetization of nano-diamond doped MgB2-nDx are reported. Superconducting transition temperature (Tc) is not affected significantly by x up to x = 0.05 and latter decreases slightly for higher x > 0.05. R(T) vs H measurements show higher Tc values under same applied magnetic fields for the nano-diamond added samples, resulting in higher estimated Hc2 values. From the magnetization measurements it was found that irreversibility field value Hirr for the pristine sample is 7.5 Tesla at 4 K and the same is increased to 13.5 Tesla for 3-wt% nD added sample at the same temperature. The Jc(H) plots at all temperatures show that Jc value is lowest at all applied fields for pristine MgB2 and the sample doped with 3-wt% nD gives the best Jc values at all fields. For the pure sample the value of Jc is of the order of 105 A/cm2 at lower fields but it decreases very fast as the magnetic field is applied and becomes negligible above 7 Tesla. The Jc is 40 times higher than pure MgB2 at 10 K at 6 Tesla field in case of 3%nD doped sample and its value is still of the order of 103 A/cm2 at 10 Tesla for the same sample. On the other hand at 20K the 5%nD sample shows the best performance at higher fields. These results are discussed in terms of extrinsic pinning due to dispersed n-Diamond in the host MgB2 matrix along with the intrinsic pinning due to possible substitution of C at Boron site and increased inter-band scattering for highly doped samples resulting in extraordinary performance of the doped system.
70 - A. Dulcic , D. Paar , M. Pozek 2001
We report magnetic field dependent magnetization and microwave impedance measurements on a MgB2 superconductor prepared by high pressure synthesis. We find that the upper critical field is linearly dependent on temperature near Tc and the dc irrevers ibility field exponent is ~1.4. The microwave data display an excess surface resistance below Tc which is neither observed in low Tc nor in high temperature superconductors (HTSC). The real part of the complex conductivity, sigma1, shows a huge maximum below Tc and the imaginary part, sigma2, is linear for temperatures less than 20 K, which can not be simply accounted for by the weak coupling BCS model with an s-wave superconducting order parameter. We speculate that this may be due to the two gaps reported by other studies. Unlike measurements on the high temperature superconducting cuprates, we find no evidence of weak-links in the superconducting state. By inverting the magnetic field dependent impedance data, we find a vortex depinning frequency that decreases with increasing magnetic field and evidence for an anisotropic upper critical magnetic field.
We investigated the effect of alloying on the upper critical field $H_{c2}$ in 12 $MgB_2$ films, in which disorder was introduced by growth, carbon doping or He-ion irradiation, finding a significant $H_{c2}$ enhancement in C-alloyed films, and an an omalous upward curvature of $H_{c2}(T)$. Record high values of $H_{c2}^{perp}(4.2) simeq 35T$ and $H_{c2}|(4.2) simeq 51T$ were observed perpendicular and parallel to the ab plane, respectively. The temperature dependence of $H_{c2}(T)$ is described well by a theory of dirty two-gap superconductivity. Extrapolation of the experimental data to T=0 suggests that $H_{c2}|(0)$ approaches the paramagnetic limit of $sim 70T$.
A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size and nanoinclusions induced by C incorporation and low temperature processing are responsible for the improvement in Jc. The irreversibility field (Hirr) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا