ﻻ يوجد ملخص باللغة العربية
We investigated the effect of alloying on the upper critical field $H_{c2}$ in 12 $MgB_2$ films, in which disorder was introduced by growth, carbon doping or He-ion irradiation, finding a significant $H_{c2}$ enhancement in C-alloyed films, and an anomalous upward curvature of $H_{c2}(T)$. Record high values of $H_{c2}^{perp}(4.2) simeq 35T$ and $H_{c2}|(4.2) simeq 51T$ were observed perpendicular and parallel to the ab plane, respectively. The temperature dependence of $H_{c2}(T)$ is described well by a theory of dirty two-gap superconductivity. Extrapolation of the experimental data to T=0 suggests that $H_{c2}|(0)$ approaches the paramagnetic limit of $sim 70T$.
We report the high-field superconducting properties of thin, disordered Re films via magneto-transport and tunneling density of states measurements. Films with thicknesses in the range of 9 nm to 3 nm had normal state sheet resistances of $sim$0.2 k$
High-quality epitaxial MgB2 thin films prepared by pulsed laser deposition with Tc = 39 K offer the opportunity to study the anisotropy and robustness of the superconducting state in magnetic fields. We measure the in-plane electrical resistivity of
We have performed flux noise and AC-susceptibility measurements on two 400 nm thick MgB$_2$ films. Both measurement techniques give information about the vortex dynamics in the sample, and hence the superconducting transition, and can be linked to ea
In this paper, we analyze the upper critical field of four MgB2 thin films, with different resistivity (between 5 to 50 mWcm) and critical temperature (between 29.5 to 38.8 K), measured up to 28 Tesla. In the perpendicular direction the critical fiel
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The E