ﻻ يوجد ملخص باللغة العربية
We measure F814W Surface Brightness Fluctuations (SBF) for a sample of distant shell galaxies with radial velocities ranging from 4000 to 8000 km/s. The distance at galaxies is then evaluated by using the SBF method. For this purpose, theoretical SBF magnitudes for the ACS@HST filters are computed for single burst stellar populations covering a wide range of ages (t=1.5-14 Gyr) and metallicities (Z=0.008-0.04). Using these stellar population models we provide the first $bar{M}_{F814W}$ versus $(F475W-F814W)_0$ calibration and we extend the previous I-band versus $(B-I)_0$ color relation to colors $(B-I)_{0}leq 2.0$ mag. Coupling our SBF measurements with the theoretical calibration we derive distances with a statistical uncertainty of $sim 8%$, and systematic error of $sim 6 %$. The procedure developed to analyze data ensures that the indetermination due to possible unmasked residual shells is well below $sim 12 %$. The results suggest that emph{optical} SBFs can be measured at $d geq 100 Mpc$ with ACS@HST imaging. SBF-based distances coupled with recession velocities corrected for peculiar motion, allow us obtain $H_{0} = 76 pm 6$ (statistical) $pm 5$ (systematic) km/s/Mpc.
We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stel
We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telesco
This work continues our efforts to calibrate model surface brightness luminosities for the study of unresolved stellar populations, through the comparison with data of Magellanic Cloud star clusters. We present here the relation between absolute K_s-
We present optical and IR integrated colours and SBF magnitudes, computed from stellar population synthesis models that include emission from the dusty envelopes surrounding TP-AGB stars undergoing mass-loss. We explore the effects of varying the mas
To empirically calibrate the IR surface brightness fluctuation (SBF) distance scale and probe the properties of unresolved stellar populations, we measured fluctuations in 65 galaxies using NICMOS on the Hubble Space Telescope. The early-type galaxie