ﻻ يوجد ملخص باللغة العربية
A microwave lens with highly reduced reflectance, as compared to conventional dielectric lenses, is proposed. The lens is based on two-dimensional or three-dimensional transmission-line networks that can be designed to have an effective refractive index larger than one, while having almost perfect impedance matching with free space. The design principles are presented and an example lens is studied using commercial simulation software.
By driving a dispersively coupled qubit-resonator system, we realize an impedance-matched $Lambda$ system that has two identical radiative decay rates from the top level and interacts with a semi-infinite waveguide. It has been predicted that a photo
Strongly confined surface plasmon-polariton modes can be used for efficiently delivering the electromagnetic energy to nano-sized volumes by reducing the cross sections of propagating modes far beyond the diffraction limit, i.e., by nanofocusing. Thi
Superconducting nanowire single-photon detectors (SNSPDs) are the highest performing photon-counting technology in the near-infrared (NIR). Due to delay-line effects, large area SNSPDs typically trade-off timing resolution and detection efficiency. H
We here report on the implementation of a microwave lens for neutral polar molecules suitable to focus molecules both in low-field-seeking and in high-field-seeking states. By using the TE_11m modes of a 12 cm long cylindrically symmetric microwave r
We present proof-of-operation for a new method of electron thermometry using microwave impedance of a hafnium micro-absorber. The new method leads to an ultimate THz-range detector suitable for microwave readout and frequency division multiplexing. T