ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Lens for Polar Molecules

159   0   0.0 ( 0 )
 نشر من قبل Melanie Schnell
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We here report on the implementation of a microwave lens for neutral polar molecules suitable to focus molecules both in low-field-seeking and in high-field-seeking states. By using the TE_11m modes of a 12 cm long cylindrically symmetric microwave resonator, Stark-decelerated ammonia molecules are transversally confined. We investigate the focusing properties of this microwave lens as a function of the molecules velocity, the detuning of the microwave frequency from the molecular resonance frequency, and the microwave power. Such a microwave lens can be seen as a first important step towards further microwave devices, such as decelerators and traps.



قيم البحث

اقرأ أيضاً

153 - S. Chervenkov , X. Wu , J. Bayerl 2013
Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of th ree electrically guided molecular species, CH$_3$F, CF$_3$H, and CF$_3$CCH, with input velocities of up to $200,rm{m,s^{-1}}$ to obtain beams with velocities below $15,rm{m,s^{-1}}$ and intensities of several $10^9,rm{mm^{-2},s^{-1}}$. The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.
We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent ma nufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material; it has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow to merging of two beams of neutral polar molecules.
We here report on the experimental realization of a microwave decelerator for neutral polar molecules, suitable for decelerating and focusing molecules in high-field-seeking states. The multi-stage decelerator consists of a cylindrical microwave cavi ty oscillating on the TE 11n mode, with n=12 electric field maxima along the symmetry axis. By switching the microwave field on and off at the appropriate times, a beam of state-selected ammonia molecules with an incident mean velocity of 25 m/s is guided while being spatially focussed in the transverse direction and bunched in the forward direction. Deceleration from 20.0 m/s to 16.9 m/s and acceleration from 20.0 m/s to 22.7 m/s is demonstrated.
Polar molecules are an emerging platform for quantum technologies based on their long-range electric dipole-dipole interactions, which open new possibilities for quantum information processing and the quantum simulation of strongly correlated systems . Here, we use magnetic and microwave fields to design a fast entangling gate with $>0.999$ fidelity and which is robust with respect to fluctuations in the trapping and control fields and to small thermal excitations. These results establish the feasibility to build a scalable quantum processor with a broad range of molecular species in optical-lattice and optical-tweezers setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا