ﻻ يوجد ملخص باللغة العربية
Superconducting nanowire single-photon detectors (SNSPDs) are the highest performing photon-counting technology in the near-infrared (NIR). Due to delay-line effects, large area SNSPDs typically trade-off timing resolution and detection efficiency. Here, we introduce a detector design based on transmission line engineering and differential readout for device-level signal conditioning, enabling a high system detection efficiency and a low detector jitter, simultaneously. To make our differential detectors compatible with single-ended time taggers, we also engineer analog differential-to-single-ended readout electronics, with minimal impact on the system timing resolution. Our niobium nitride differential SNSPDs achieve $47.3,% pm 2.4,%$ system detection efficiency and sub-$10,mathrm{ps}$ system jitter at $775,mathrm{nm}$, while at $1550,mathrm{nm}$ they achieve $71.1,% pm 3.7,%$ system detection efficiency and $13.1,mathrm{ps} pm 0.4,mathrm{ps}$ system jitter. These detectors also achieve sub-100 ps timing response at one one-hundredth maximum level, $30.7,mathrm{ps} pm 0.4,mathrm{ps}$ at $775,mathrm{nm}$ and $47.6,mathrm{ps} pm 0.4,mathrm{ps}$ at $1550,mathrm{nm}$, enabling time-correlated single-photon counting with high dynamic range response functions. Furthermore, thanks to the differential impedance-matched design, our detectors exhibit delay-line imaging capabilities and photon-number resolution. The properties and high-performance metrics achieved by our system make it a versatile photon-detection solution for many scientific applications.
To analyze the switching dynamics and output performance of a superconducting nanowire single photon detector (SNSPD), the nanowire is usually modelled as an inductor in series with a time-varying resistor induced by absorption of a photon. Our recen
We demonstrate waveguide-integrated superconducting nanowire single-photon detectors on thin-film lithium niobate (LN). Using a 250 um-long NbN superconducting nanowire lithographically defined on top of a 125 um-long LN nanowaveguide, on-chip detect
A microwave lens with highly reduced reflectance, as compared to conventional dielectric lenses, is proposed. The lens is based on two-dimensional or three-dimensional transmission-line networks that can be designed to have an effective refractive in
A superconducting loop stores persistent current without any ohmic loss, making it an ideal platform for energy efficient memories. Conventional superconducting memories use an architecture based on Josephson junctions (JJs) and have demonstrated acc
Conventional readout of a superconducting nanowire single-photon detector (SNSPD) sets an upper bound on the output voltage to be the product of the bias current and the load impedance, $I_mathrm{B}times Z_mathrm{load}$, where $Z_mathrm{load}$ is lim