ﻻ يوجد ملخص باللغة العربية
The question of robustness of a network under random ``attacks is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is investigated. After examing the static properties of the quenched version (in respect to the random antiferromagnetic interactions) of the model, the persistence of the magnetization is analysed also in the annealed approximation, and the difference in the results are discussed.
We perform intensive numerical simulations of the three-dimensional site-diluted Ising antiferromagnet in a magnetic field at high values of the external applied field. Even if data for small lattice sizes are compatible with second-order criticality
We investigate the existence of several (anti-)ferromagnetic phases in the diluted ferromagnetic Kondo-lattice model, i.e. ferromagnetic coupling of local moment and electron spin. To do this we use a coherent potential approximation (CPA) with a dyn
We study RKKY interactions between local magnetic moments for both doped and undoped graphene. We find in both cases that the interactions are primarily ferromagnetic for moments on the same sublattice, and antiferromagnetic for moments on opposite s
The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase,
Recent experiments on switching antiferromagnetic domains by electric current pulses have attracted a lot of attention to spin-orbit torques in antiferromagnets. In this work, we employ the tight-binding model solver, kwant, to compute spin-orbit tor