ترغب بنشر مسار تعليمي؟ اضغط هنا

Diluted Graphene Antiferromagnet

127   0   0.0 ( 0 )
 نشر من قبل Luis Brey
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study RKKY interactions between local magnetic moments for both doped and undoped graphene. We find in both cases that the interactions are primarily ferromagnetic for moments on the same sublattice, and antiferromagnetic for moments on opposite sublattices. This suggests that at sufficiently low temperatures dilute magnetic moments embedded in graphene can order into a state analogous to that of a dilute antiferromagnet. We find that in the undoped case one expects no net magnetic moment, and demonstrate numerically that this effect generalizes to ribbons where the magnetic response is strongest at the edge, suggesting the possibility of an unusual spin-transfer device. For doped graphene we find that moments at definite lattice sites interact over longer distances than those placed in interstitial sites of the lattice ($1/R^2$ vs. $1/R^3$) because the former support a Kohn anomaly that is suppressed in the latter due to the absence of backscattering.



قيم البحث

اقرأ أيضاً

Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical mani pulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust long-distance spin transport through an AFMI, in our case the gate-controlled, canted antiferromagnetic (CAF) state that appears at the charge neutrality point of graphene in the presence of an external magnetic field. Utilizing gate-controlled quantum Hall (QH) edge states as spin-dependent injectors and detectors, we observe large, non-local electrical signals across a 5 micron-long, insulating channel only when it is biased into the nu=0 CAF state. Among possible transport mechanisms, spin superfluidity in an antiferromagnetic state gives the most consistent interpretation of the non-local signals dependence on magnetic field, temperature and filling factors. This work also demonstrates that graphene in the QH regime is a powerful model system for fundamental studies of antiferromagnetic, and in the case of a large in-plane field, ferromagnetic spintronics.
304 - Aifeng Wang , D. Graf , Lijun Wu 2016
We report interlayer electronic transport in CaMnBi$_{2}$ single crystals. Quantum oscillations and angular magnetoresistance suggest coherent electronic conduction and valley polarized conduction of Dirac states. Small cyclotron mass, large mobility of carriers and nontrivial Berrys phase are consistent with the presence of Dirac fermions on the side wall of the warped cylindrical Fermi surface. Similar to SrMnBi$_{2}$ that features an anisotropic Dirac cone, our results suggest that magnetic field-induced changes in the interlayer conduction are also present in layered bismuth-based materials with zero-energy line in momentum space created by the staggered alkaline earth atoms.
We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac-current in a NiFe/Ir Mn bilayer. At room temperature, we observe antidamping-like spin torque acting on the NiFe ferromagnet, generated by the in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.
Graphene oxide (GO) flakes have been deposited to bridge the gap between two epitaxial graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers (SB) at the graphene/graphene oxide junctio ns, as a consequence of the band-gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 $^circ$C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm$^2$/Vs, rivaling silicon. {it In situ} local oxidation of patterned epitaxial graphene has been achieved.
Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undope d. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berrys phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties which may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material.Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nanoelectronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا