ترغب بنشر مسار تعليمي؟ اضغط هنا

Desynchronization in diluted neural networks

145   0   0.0 ( 0 )
 نشر من قبل Alessandro Torcini
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase-locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of ``stable chaos, i.e. by observing that the stochastic-like behaviour is limited to a an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.



قيم البحث

اقرأ أيضاً

We discuss, in this paper, the dynamical properties of extremely diluted, non-monotonic neural networks. Assuming parallel updating and the Hebb prescription for the synaptic connections, a flow equation for the macroscopic overlap is derived. A rich dynamical phase diagram was obtained, showing a stable retrieval phase, as well as a cycle two and chaotic behavior. Numerical simulations were performed, showing good agreement with analytical results. Furthermore, the simulations give an additional insight into the microscopic dynamical behavior during the chaotic phase. It is shown that the freezing of individual neuron states is related to the structure of chaotic attractors.
The retrieval behavior and thermodynamic properties of symmetrically diluted Q-Ising neural networks are derived and studied in replica-symmetric mean-field theory generalizing earlier works on either the fully connected or the symmetrical extremely diluted network. Capacity-gain parameter phase diagrams are obtained for the Q=3, Q=4 and $Q=infty$ state networks with uniformly distributed patterns of low activity in order to search for the effects of a gradual dilution of the synapses. It is shown that enlarged regions of continuous changeover into a region of optimal performance are obtained for finite stochastic noise and small but finite connectivity. The de Almeida-Thouless lines of stability are obtained for arbitrary connectivity, and the resulting phase diagrams are used to draw conclusions on the behavior of symmetrically diluted networks with other pattern distributions of either high or low activity.
The optimal capacity of a diluted Blume-Emery-Griffiths neural network is studied as a function of the pattern activity and the embedding stability using the Gardner entropy approach. Annealed dilution is considered, cutting some of the couplings ref erring to the ternary patterns themselves and some of the couplings related to the active patterns, both simultaneously (synchronous dilution) or independently (asynchronous dilution). Through the de Almeida-Thouless criterion it is found that the replica-symmetric solution is locally unstable as soon as there is dilution. The distribution of the couplings shows the typical gap with a width depending on the amount of dilution, but this gap persists even in cases where a particular type of coupling plays no role in the learning process.
Our work intends to show that: (1) Quantum Neural Networks (QNN) can be mapped onto spinnetworks, with the consequence that the level of analysis of their operation can be carried out on the side of Topological Quantum Field Theories (TQFT); (2) Deep Neural Networks (DNN) are a subcase of QNN, in the sense that they emerge as the semiclassical limit of QNN; (3) A number of Machine Learning (ML) key-concepts can be rephrased by using the terminology of TQFT. Our framework provides as well a working hypothesis for understanding the generalization behavior of DNN, relating it to the topological features of the graphs structures involved.
The question of robustness of a network under random ``attacks is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is inve stigated. After examing the static properties of the quenched version (in respect to the random antiferromagnetic interactions) of the model, the persistence of the magnetization is analysed also in the annealed approximation, and the difference in the results are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا