ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ia Supernovae are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL

217   0   0.0 ( 0 )
 نشر من قبل Michael Wood-Vasey
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained 1087 NIR (JHKs) measurements of 21 SNe Ia using PAIRITEL, nearly doubling the number of well-sampled NIR SN Ia light curves. These data strengthen the evidence that SNe Ia are excellent standard candles in the NIR, even without correction for optical light-curve shape. We construct fiducial NIR templates for normal SNe Ia from our sample, excluding only the three known peculiar SNe Ia: SN 2005bl, SN 2005hk, and SN 2005ke. The H-band absolute magnitudes in this sample of 18 SNe Ia have an intrinsic rms of only 0.15 mag with no correction for light-curve shape. We found a relationship between the H-band extinction and optical color excess of AH=0.2E(B-V). This variation is as small as the scatter in distance modulus measurements currently used for cosmology based on optical light curves after corrections for light-curve shape. Combining the homogeneous PAIRITEL measurements with 23 SNe Ia from the literature, these 41 SNe Ia have standard H-band magnitudes with an rms scatter of 0.16 mag. The good match of our sample with the literature sample suggests there are few systematic problems with the photometry. We present a nearby NIR Hubble diagram that shows no correlation of the residuals from the Hubble line with light-curve properties. Future samples that account for optical and NIR light-curve shapes, absorption, spectroscopic variation, or host-galaxy properties may reveal effective ways to improve the use of SNe Ia as distance indicators. Since systematic errors due to dust absorption in optical bands remain the leading difficulty in the cosmological use of supernovae, the good behavior of SN Ia NIR light curves and their relative insensitivity to reddening make these objects attractive candidates for future cosmological work.



قيم البحث

اقرأ أيضاً

We analyze a set of 89 Type Ia supernovae (SN Ia) that have both optical and near-infrared (NIR) photometry to derive distances and construct low redshift ($z < 0.04$) Hubble diagrams. We construct mean light curve (LC) templates using a hierarchical Bayesian model. We explore both Gaussian process (GP) and template methods for fitting the LCs and estimating distances, while including peculiar velocity and photometric uncertainties. For the 56 SN Ia with both optical and NIR observations near maximum light, the GP method yields a NIR-only Hubble-diagram with a RMS of $0.117 pm 0.014$ mag when referenced to the NIR maxima. For each NIR band, a comparable GP method RMS is obtained when referencing to NIR-max or B-max. Using NIR LC templates referenced to B-max yields a larger RMS value of $0.138 pm 0.014$ mag. Fitting the corresponding optical data using standard LC fitters that use LC shape and color corrections yields larger RMS values of $0.179 pm 0.018$ mag with SALT2 and $0.174 pm 0.021$ mag with SNooPy. Applying our GP method to subsets of SN Ia NIR LCs at NIR maximum light, even without corrections for LC shape, color, or host-galaxy dust reddening, provides smaller RMS in the inferred distances, at the $sim 2.3 - 4.1sigma$ level, than standard optical methods that do correct for those effects. Our ongoing RAISIN program on the Hubble Space Telescope will exploit this promising infrared approach to limit systematic errors when measuring the expansion history of the universe to constrain dark energy.
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assu ming $Lambda$CDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local $H_0$ measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where intrinsic variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak $J$ magnitude $M_J = -18.524;pm;0.041$ mag and $H_0 = 72.8;pm;1.6$ (statistical) $pm$ 2.7 (systematic) km s$^{-1}$ Mpc$^{-1}$. The 2.2 $%$ statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak $J$ magnitude scatter is just $sim$0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing $H_0$ distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in $H_0$ with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak $J$-band magnitude.
We describe a research program to improve the understanding of Type Ia Supernovae (SNe Ia) by modeling and observing near infrared (NIR) spectra of these events. The NIR between 0.9 microns and 2.5 microns is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. NIR analysis will enable us to place important constraints on the physical properties of SNe Ia progenitors and their explosion dynamics. These are critical steps toward understanding the physics of Type Ia Supernovae. We have identified features in NIR spectra of SNe Ia that discriminate between Population I and Population II progenitors. These features can significantly restrict the evolutionary history of SNe Ia. We also examine certain products of the nuclear burning that enable us to place constraints on the propagation of nuclear burning during the explosion, and on the behavior of the burning front during the event. We will be able to differentiate between the several explosion models for SNe Ia.
75 - G. H. Marion 2003
We report near infrared (NIR) spectroscopic observations of twelve ``Branch-normal Type Ia supernovae (SNe Ia) which cover the wavelength region from 0.8-2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within three weeks of maximum light. The epochs of observation range from thirteen days before maximum light to eighteen days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and, thus, the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from MgII, CaII, SiII, FeII, CoII, NiII and possibly MnII. We find no indications for hydrogen, helium or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion.
206 - Kate Maguire 2009
We present the first near infrared Hubble diagram for type II-P supernovae to further explore their value as distance indicators. We use a modified version of the standardised candle method which relies on the tight correlation between the absolute m agnitudes of type II-P supernovae and their expansion velocities during the plateau phase. Although our sample contains only 12 II-P supernovae and they are necessarily local (z < 0.02), we demonstrate using near infrared JHK photometry that it may be possible to reduce the scatter in the Hubble diagram to 0.1-0.15 magnitudes. While this is potentially similar to the dispersion seen for type Ia supernovae, we caution that this needs to be confirmed with a larger sample of II-P supernovae in the Hubble flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا