ترغب بنشر مسار تعليمي؟ اضغط هنا

Type II-P supernovae as standardised candles: improvements using near infrared data

207   0   0.0 ( 0 )
 نشر من قبل Kate Maguire
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kate Maguire




اسأل ChatGPT حول البحث

We present the first near infrared Hubble diagram for type II-P supernovae to further explore their value as distance indicators. We use a modified version of the standardised candle method which relies on the tight correlation between the absolute magnitudes of type II-P supernovae and their expansion velocities during the plateau phase. Although our sample contains only 12 II-P supernovae and they are necessarily local (z < 0.02), we demonstrate using near infrared JHK photometry that it may be possible to reduce the scatter in the Hubble diagram to 0.1-0.15 magnitudes. While this is potentially similar to the dispersion seen for type Ia supernovae, we caution that this needs to be confirmed with a larger sample of II-P supernovae in the Hubble flow.



قيم البحث

اقرأ أيضاً

We revisit the observed correlation between Hbeta and FeII velocities for Type II-P supernovae (SNe~II-P) using 28 optical spectra of 13 SNe II-P and demonstrate that it is well modeled by a linear relation with a dispersion of about 300 km/s. Using this correlation, we reanalyze the publicly available sample of SNe II-P compiled by DAndrea et al. and find a Hubble diagram with an intrinsic scatter of 11% in distance, which is nearly as tight as that measured before their sample is added to the existing set. The larger scatter reported in their work is found to be systematic, and most of it can be alleviated by measuring Hbeta rather than FeII velocities, due to the low signal-to-noise ratios and early epochs at which many of the optical spectra were obtained. Their sample, while supporting the mounting evidence that SNe II-P are good cosmic rulers, is biased toward intrinsically brighter objects and is not a suitable set to improve upon SN II-P correlation parameters. This will await a dedicated survey.
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assu ming $Lambda$CDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local $H_0$ measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where intrinsic variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak $J$ magnitude $M_J = -18.524;pm;0.041$ mag and $H_0 = 72.8;pm;1.6$ (statistical) $pm$ 2.7 (systematic) km s$^{-1}$ Mpc$^{-1}$. The 2.2 $%$ statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak $J$ magnitude scatter is just $sim$0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing $H_0$ distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in $H_0$ with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak $J$-band magnitude.
We analyze a set of 89 Type Ia supernovae (SN Ia) that have both optical and near-infrared (NIR) photometry to derive distances and construct low redshift ($z < 0.04$) Hubble diagrams. We construct mean light curve (LC) templates using a hierarchical Bayesian model. We explore both Gaussian process (GP) and template methods for fitting the LCs and estimating distances, while including peculiar velocity and photometric uncertainties. For the 56 SN Ia with both optical and NIR observations near maximum light, the GP method yields a NIR-only Hubble-diagram with a RMS of $0.117 pm 0.014$ mag when referenced to the NIR maxima. For each NIR band, a comparable GP method RMS is obtained when referencing to NIR-max or B-max. Using NIR LC templates referenced to B-max yields a larger RMS value of $0.138 pm 0.014$ mag. Fitting the corresponding optical data using standard LC fitters that use LC shape and color corrections yields larger RMS values of $0.179 pm 0.018$ mag with SALT2 and $0.174 pm 0.021$ mag with SNooPy. Applying our GP method to subsets of SN Ia NIR LCs at NIR maximum light, even without corrections for LC shape, color, or host-galaxy dust reddening, provides smaller RMS in the inferred distances, at the $sim 2.3 - 4.1sigma$ level, than standard optical methods that do correct for those effects. Our ongoing RAISIN program on the Hubble Space Telescope will exploit this promising infrared approach to limit systematic errors when measuring the expansion history of the universe to constrain dark energy.
Despite vast improvements in the measurement of the cosmological parameters, the nature of dark energy and an accurate value of the Hubble constant (H$_0$) in the Hubble-Lema^itre law remain unknown. To break the current impasse, it is necessary to d evelop as many independent techniques as possible, such as the use of Type II supernovae (SNe II). The goal of this paper is to demonstrate the utility of SNe II for deriving accurate extragalactic distances, which will be an asset for the next generation of telescopes where more-distant SNe II will be discovered. More specifically, we present a sample from the Dark Energy Survey Supernova Program (DES-SN) consisting of 15 SNe II with photometric and spectroscopic information spanning a redshift range up to 0.35. Combining our DES SNe with publicly available samples, and using the standard candle method (SCM), we construct the largest available Hubble diagram with SNe II in the Hubble flow (70 SNe II) and find an observed dispersion of 0.27 mag. We demonstrate that adding a colour term to the SN II standardisation does not reduce the scatter in the Hubble diagram. Although SNe II are viable as distance indicators, this work points out important issues for improving their utility as independent extragalactic beacons: find new correlations, define a more standard subclass of SNe II, construct new SN II templates, and dedicate more observing time to high-redshift SNe II. Finally, for the first time, we perform simulations to estimate the redshift-dependent distance-modulus bias due to selection effects.
Accurate standardisation of Type Ia supernovae (SNIa) is instrumental to the usage of SNIa as distance indicators. We analyse a homogeneous sample of 22 low-z SNIa, observed by the Carnegie Supernova Project (CSP) in the optical and near infra-red (N IR). We study the time of the second peak in the NIR band due to re-brightening, t2, as an alternative standardisation parameter of SNIa peak brightness. We use BAHAMAS, a Bayesian hierarchical model for SNIa cosmology, to determine the residual scatter in the Hubble diagram. We find that in the absence of a colour correction, t2 is a better standardisation parameter compared to stretch: t2 has a 1 sigma posterior interval for the Hubble residual scatter of [0.250, 0.257] , compared to [0.280, 0.287] when stretch (x1) alone is used. We demonstrate that when employed together with a colour correction, t2 and stretch lead to similar residual scatter. Using colour, stretch and t2 jointly as standardisation parameters does not result in any further reduction in scatter, suggesting that t2 carries redundant information with respect to stretch and colour. With a much larger SNIa NIR sample at higher redshift in the future, t2 could be a useful quantity to perform robustness checks of the standardisation procedure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا