ﻻ يوجد ملخص باللغة العربية
The contribution of nontrivial vacuum (topological) excitations, more specifically vortex configurations of the self-dual Chern-Simons-Higgs model, to the functional partition function is considered. By using a duality transformation, we arrive at a representation of the partition function in terms of which explicit vortex degrees of freedom are coupled to a dual gauge field. By matching the obtained action to a field theory for the vortices, the physical properties of the model in the presence of vortex excitations are then studied. In terms of this field theory for vortices in the self-dual Chern-Simons Higgs model, we determine the location of the critical value for the Chern-Simons parameter below which vortex condensation can happen in the system. The effects of self-energy quantum corrections to the vortex field are also considered.
Quantum electrodynamics (QED) of electrons confined in a plane and that yet can undergo interactions mediated by an unconstrained photon has been described by the so-called {it pseudo-QED} (PQED), the (2+1)-dimensional version of the equivalent dimen
Introducing a chemical potential in the functional method, we construct the effective action of QED$_3$ with a Chern-Simons term. We examine a possibility that charge condensation $langlepsi^daggerpsi rangle$ remains nonzero at the limit of the zero
This paper explores the possibility of using Maxwell algebra and its generalizations called resonant algebras for the unified description of topological insulators. We offer the natural action construction, which includes the relativistic Wen-Zee and
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity
Topological excitations are believed to play an important role in different areas of physics. For example, one case of topical interest is the use of dual models of quantum cromodynamics to understand properties of its vacuum and confinement through