ﻻ يوجد ملخص باللغة العربية
Topological excitations are believed to play an important role in different areas of physics. For example, one case of topical interest is the use of dual models of quantum cromodynamics to understand properties of its vacuum and confinement through the condensation of magnetic monopoles and vortices. Other applications are related to the role of these topological excitations, nonhomogeneous solutions of the field equations, in phase transitions associated to spontaneous symmetry breaking in gauge theories, whose study is of importance in phase transitions in the early universe, for instance. Here we show a derivation of a model dual to the scalar Abelian Higgs model where its topological excitations, namely vortex-strings, become manifest and can be treated in a quantum field theory way. The derivation of the nontrivial contribution of these vacuum excitations to phase transitions and its analogy with superconductivity is then made possible and they are studied here.
The contribution of nontrivial vacuum (topological) excitations, more specifically vortex configurations of the self-dual Chern-Simons-Higgs model, to the functional partition function is considered. By using a duality transformation, we arrive at a
In $d$ dimensions, the model for a massless $p$-form in curved space is known to be a reducible gauge theory for $p>1$, and therefore its covariant quantisation cannot be carried out using the standard Faddeev-Popov scheme. However, adding a mass ter
We discuss dual formulations of vortex strings (magnetic flux tubes) in the four-dimensional ${cal N} =1$ supersymmetric Abelian Higgs model with the Fayet--Iliopoulos term in the superspace formalism. The Lagrangian of the model is dualized into a L
The mean-square width of the energy profile of bosonic string is calculated considering two boundary terms in the effective action. The perturbative expansion of the Lorentz-invariant boundary terms at the second and the fourth order in the effective
We argue that an effective field theory of local fluid elements captures the constraints on hydrodynamic transport stemming from the presence of quantum anomalies in the underlying microscopic theory. Focussing on global current anomalies for an arbi